Mechanics of Geological Materials

1985 ◽  
Vol 38 (10) ◽  
pp. 1256-1260 ◽  
Author(s):  
M. M. Carroll

Needed advances in various areas of energy resource recovery, underground construction, earthquake hazard reduction, and conventional and nuclear defense depend critically on the development of improved theories for mechanical and thermal behavior of geological materials. The areas include oil and gas (including off-shore and Arctic production), mining and in situ recovery, geothermal production, nuclear waste isolation, under-ocean tunneling, underground storage, nuclear test containment, and effects of surface explosions. The needed developments, some of which are detailed in earlier National Academy of Science reports, include constitutive theories for inelastic deformation, failure, and post-failure behavior, influence of microstructure and macrostructure, rock fracture (direct breakage, hydraulic fracture explosive fracture), frictional sliding, soil liquefaction, mechanics of ice, determination of in situ conditions, flow through porous media, and thermal effects. Advances in mechanics of geological materials will require adaptation of some established techniques in rheology, metal plasticity, composite materials, mixtures, etc., and also the development of some entirely new ideas and methods. The complicated nature of rocks and soils, the wide ranges of stress, temperature, strain rate, etc., the interactions encountered in geotechnical processes, and the vastly different dimensions and time scales involved, lead to a host of challenging problems in solid mechanics.

Author(s):  
Martin Zaleski ◽  
Gerald Ferris ◽  
Alex Baumgard

Earthquake hazard management for oil and gas pipelines should include both preparedness and response. The typical approach for management of seismic hazards for pipelines is to determine where large ground motions are frequently expected, and apply mitigation to those pipeline segments. The approach presented in this paper supplements the typical approach but focuses on what to do, and where to do it, just after an earthquake happens. In other words, we ask and answer: “Is the earthquake we just had important?”, “What pipeline is and what sites might it be important for?”, and “What should we do?” In general, modern, high-pressure oil and gas pipelines resist the direct effects of strong shaking, but are vulnerable to large co-seismic differential permanent ground displacement (PGD) produced by surface fault rupture, landslides, soil liquefaction, or lateral spreading. The approach used in this paper employs empirical relationships between earthquake magnitude, distance, and the occurrence of PGD, derived from co-seismic PGD case-history data, to prioritize affected pipeline segments for detailed site-specific hazard assessments, pre-event resiliency upgrades, and post-event response. To help pipeline operators prepare for earthquakes, pipeline networks are mapped with respect to earthquake probability and co-seismic PGD susceptibility. Geological and terrain analyses identify pipeline segments that cross PGD-susceptible ground. Probabilistic seismic models and deterministic scenarios are considered in estimating the frequency of sufficiently large and close causative earthquakes. Pipeline segments are prioritized where strong earthquakes are frequent and ground is susceptible to co-seismic PGD. These may be short-listed for mitigation that either reduces the pipeline’s vulnerability to damage or limits failure consequences. When an earthquake occurs, pipeline segments with credible PGD potential are highlighted within minutes of an earthquake’s occurrence. These assessments occur in near-real-time as part of an online geohazard management database. The system collects magnitude and location data from online earthquake data feeds and intersects them against pipeline network and terrain hazard map data. Pipeline operators can quickly mobilize inspection and response resources to a focused area of concern.


SPE Journal ◽  
2010 ◽  
Vol 15 (02) ◽  
pp. 368-381 ◽  
Author(s):  
Y.. Fan ◽  
L.J.. J. Durlofsky ◽  
H.A.. A. Tchelepi

Summary Oil shale is a highly abundant energy resource, though commercial production has yet to be realized. Thermal in-situ upgrading processes for producing hydrocarbons from oil shale have gained attention recently, however, in part because of promising results reported by Shell using its in-situ conversion process (Crawford et al. 2008). This and similar processes entail heating the oil shale to approximately 700°F (371°C), where the kerogen in the shale decomposes through a series of chemical reactions into liquid and gas products. In this paper, we present a detailed numerical formulation of the in-situ upgrading process. Our model, which can be characterized as a thermal/compositional, chemical reaction, and flow formulation, is implemented into Stanford's General Purpose Research Simulator (GPRS). The formulation includes strongly temperature-dependent kinetic reactions, fully compositional flow and transport, and a model for the introduction of heat into the formation through downhole heaters. We present detailed simulation results for representative systems. The model and heating patterns are based on information in Shell publications; chemical-reaction and thermodynamic data are from previously reported pyrolysis experiments. After a relatively modest degree of parameter adjustment (with parameters restricted to physically realistic ranges), our results for oil and gas production are in reasonable agreement with available field data. We also investigate various sensitivities and show how production is affected by heater temperature and location. The ability to model these effects will be essential for the eventual design and optimization of in-situ upgrading operations.


2021 ◽  
Author(s):  
Maya Kobchenko ◽  
Anne Pluymakers ◽  
Benoit Cordonnier ◽  
Nazmul Mondol ◽  
Francois Renard

<p>Shales are layered sedimentary rocks, which can be almost impermeable for fluids and act as seals and cap-rocks, or if a shale layer hosts a fracture network, it can act as a fluid reservoir and/or conduit. Organic-rich shales contain organic matter - kerogen, which can transform from solid-state to oil and gas during burial and exposure to a suitable temperature. When hydrocarbons are expelled from the organic matter due to maturation, pore-pressure increases, which drives the propagation of hydraulic fractures, a mechanism identified to explain oil and gas primary migration. Density, geometry, extension, and connectivity of the final fracture network depend on the combination of the heating conditions and history of external loading experienced by the shale. Here, we have performed a series of rock physics experiments where organic-rich shale samples were heated, under in situ conditions, and the development of microfractures was imaged through time. We used the high-energy X-ray beam produced at the European Synchrotron Radiation Facility to acquire dynamic microtomography images and monitor different modes of shale deformation in-situ in 3D. We reproduced natural conditions of the shale deformation processes using a combination of axial load, confining pressure, and heating of the shale samples. Shales feature natural sedimentary laminations and hydraulic fractures propagate parallel to these laminae if no overburden stress is applied. However, if the principal external load becomes vertical, perpendicular to the shale lamination, the fracture propagation direction can deviate from the horizontal one. Together horizontal and vertical fractures form a three-dimensional connected fracture network, which provides escaping pathways for generated hydrocarbons. Our experiments demonstrate that tight shale rocks, which are often considered impermeable, could host transient episodes of micro-fracturing and high permeability during burial history.</p>


Author(s):  
Fuke Dong ◽  
Zijun Feng ◽  
Dong Yang ◽  
Yangsheng Zhao ◽  
Dereck Elsworth

In-situ injection of steam for heating of the subsurface is an efficient method for the recovery of oil and gas from oil shale where permeability typically evolves with temperature. We reported measurements on Jimusar oil shales(Xinjiang, China) at different temperatures to 600℃ and under recreated in situ triaxial stresses to obtain permeability evolution with temperature and stress. Permeability of tight oil shales evolves with temperature to a threshold temperature and peak temperature. The threshold temperature was subjected to triaxial stresses. For Jimusar oil shale, the threshold temperature ranges from 200℃ to 250℃ at ground stress of buried depth of 500m and from 350℃ to 400℃ at buried depth of 1000m. The peak temperature was almost not subjected to triaxial stress and the range is from 450℃ to 500℃ for all Jimusar samples. Pyrolysis plays an important role in permeability evolution and fundamentally changes permeability tendency and magnitude. At high temperature permeability exhibits a little reduction due to stress effect but still remains a high level due to pyrolysis. The above results show that oil shale mass can change from tight porous media into highly permeable media and oil & gas can easily flow through oil shale stratum.


2016 ◽  
pp. 89-92
Author(s):  
V. V. Majorov ◽  
N. N. Zakirov ◽  
T. V. Yuretskaya ◽  
R. M. Galikeev ◽  
A. F. Semenenko

The samples of core from the well in West-Novomostovsk oil field, Krasnoleninsk petroleum bearing area, were analyzed. A complex of core samples petrophysical studies were carried out as well as the laboratory study of capacity and electrical properties of 40 core samples in ambient conditions and in the simulated reservoir conditions. The typical relationships as applied to the in-situ conditions of the studied area wells were obtained.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3033 ◽  
Author(s):  
Fuke Dong ◽  
Zijun Feng ◽  
Dong Yang ◽  
Yangsheng Zhao ◽  
Derek Elsworth

In-situ injection of steam for heating of the subsurface is an efficient method for the recovery of oil and gas from oil shale where permeability typically evolves with temperature. We report measurements on Jimusar oil shales (Xinjiang, China) at stepped temperatures to 600 °C and under recreated in situ triaxial stresses (15 MPa) and recover permeability evolution with temperature and stress. Initial very low permeability evolves with the temperature above an initial threshold temperature at high rate before reaching a plateau in permeability above a peak temperature. The threshold temperature triggering the initial rapid rise in permeability is a function of triaxial stresses. For Jimusar oil shale, this threshold temperature ranges from 200 °C to 250 °C for burial depths of 500 m and from 350 °C to 400 °C for burial depths of 1000 m. This rapid rise in permeability correlates with the vigor of pyrolysis and directly scales with the production rate of pyrolysis-derived gas production. The permeability increases with temperature to a plateau in peak permeability that occurs at a peak-permeability temperature. This peak temperature is insensitive to stress and is in the range 450 °C to 500 °C for all Jimusar samples. Pyrolysis plays an important role in the stage of rapid permeability evolution with this effect stopping once pyrolysis is essentially complete. At these ultimate high temperatures, permeability exhibits little reduction due to stress and remains elevated due to the vigor of the pyrolysis. These results effectively demonstrate that oil shale may be transformed by pyrolysis from a tight porous medium into highly permeable medium and that oil and gas may be readily recovered from it.


2020 ◽  
Vol 9 (1) ◽  
pp. 64
Author(s):  
Maija Nuppunen-Puputti ◽  
Riikka Kietäväinen ◽  
Lotta Purkamo ◽  
Pauliina Rajala ◽  
Merja Itävaara ◽  
...  

Fungi have an important role in nutrient cycling in most ecosystems on Earth, yet their ecology and functionality in deep continental subsurface remain unknown. Here, we report the first observations of active fungal colonization of mica schist in the deep continental biosphere and the ability of deep subsurface fungi to attach to rock surfaces under in situ conditions in groundwater at 500 and 967 m depth in Precambrian bedrock. We present an in situ subsurface biofilm trap, designed to reveal sessile microbial communities on rock surface in deep continental groundwater, using Outokumpu Deep Drill Hole, in eastern Finland, as a test site. The observed fungal phyla in Outokumpu subsurface were Basidiomycota, Ascomycota, and Mortierellomycota. In addition, significant proportion of the community represented unclassified Fungi. Sessile fungal communities on mica schist surfaces differed from the planktic fungal communities. The main bacterial phyla were Firmicutes, Proteobacteria, and Actinobacteriota. Biofilm formation on rock surfaces is a slow process and our results indicate that fungal and bacterial communities dominate the early surface attachment process, when pristine mineral surfaces are exposed to deep subsurface ecosystems. Various fungi showed statistically significant cross-kingdom correlation with both thiosulfate and sulfate reducing bacteria, e.g., SRB2 with fungi Debaryomyces hansenii.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4570
Author(s):  
Aman Turakhanov ◽  
Albina Tsyshkova ◽  
Elena Mukhina ◽  
Evgeny Popov ◽  
Darya Kalacheva ◽  
...  

In situ shale or kerogen oil production is a promising approach to developing vast oil shale resources and increasing world energy demand. In this study, cyclic subcritical water injection in oil shale was investigated in laboratory conditions as a method for in situ oil shale retorting. Fifteen non-extracted oil shale samples from Bazhenov Formation in Russia (98 °C and 23.5 MPa reservoir conditions) were hydrothermally treated at 350 °C and in a 25 MPa semi-open system during 50 h in the cyclic regime. The influence of the artificial maturation on geochemical parameters, elastic and microstructural properties was studied. Rock-Eval pyrolysis of non-extracted and extracted oil shale samples before and after hydrothermal exposure and SARA analysis were employed to analyze bitumen and kerogen transformation to mobile hydrocarbons and immobile char. X-ray computed microtomography (XMT) was performed to characterize the microstructural properties of pore space. The results demonstrated significant porosity, specific pore surface area increase, and the appearance of microfractures in organic-rich layers. Acoustic measurements were carried out to estimate the alteration of elastic properties due to hydrothermal treatment. Both Young’s modulus and Poisson’s ratio decreased due to kerogen transformation to heavy oil and bitumen, which remain trapped before further oil and gas generation, and expulsion occurs. Ultimately, a developed kinetic model was applied to match kerogen and bitumen transformation with liquid and gas hydrocarbons production. The nonlinear least-squares optimization problem was solved during the integration of the system of differential equations to match produced hydrocarbons with pyrolysis derived kerogen and bitumen decomposition.


Sign in / Sign up

Export Citation Format

Share Document