A Case and Elastomer Annulus Under Lateral Impulse

1989 ◽  
Vol 42 (11S) ◽  
pp. S142-S149 ◽  
Author(s):  
Herbert E. Lindberg ◽  
Yvonne D. Murray

Fourier series and finite element solutions are given for stresses in a cylindrical case filled with an annulus of elastomeric material. The Fourier series solutions are for membrane stresses, which dominate at early time, and are given for three case-elastomer models: (1) a slide boundary model in which the case wall moves as a unit with the elastomer in radial motion but, with a weak bond between the case and elastomer, is free to slide relative to the elastomer in tangential motion, (2) a unit motion model for a well-bonded elastomer in which the case wall and elastomer are assumed to move together as a unit in both radial and tangential motion, and (3) a radiation boundary model in which tangential motion of the case wall radiates energy into a well-bonded elastomer. For typical case, elastomer and bond mechanical properties, the radiation boundary model gives the most appropriate solution, which differs substantially from the other solutions even for very soft elastomers. Finite element solutions agree closely with and support the validity of all three analytical models, which were used to guide the finite element “experiments” and interpret and generalize their results.

1975 ◽  
Vol 97 (3) ◽  
pp. 206-213 ◽  
Author(s):  
E. Friedman

Analytical models are developed for calculating temperatures, stresses and distortions resulting from the welding process. The models are implemented in finite element formulations and applied to a longitudinal butt weld. Nonuniform temperature transients are shown to result in the characteristic transverse bending distortions. Residual stresses are greatest in the weld metal and heat-affected zones, while the accumulated plastic strain is maximum at the interface of these two zones on the underside of the weldment.


2021 ◽  
Vol 263 (1) ◽  
pp. 5301-5309
Author(s):  
Luca Alimonti ◽  
Abderrazak Mejdi ◽  
Andrea Parrinello

Statistical Energy Analysis (SEA) often relies on simplified analytical models to compute the parameters required to build the power balance equations of a coupled vibro-acoustic system. However, the vibro-acoustic of modern structural components, such as thick sandwich composites, ribbed panels, isogrids and metamaterials, is often too complex to be amenable to analytical developments without introducing further approximations. To overcome this limitation, a more general numerical approach is considered. It was shown in previous publications that, under the assumption that the structure is made of repetitions of a representative unit cell, a detailed Finite Element (FE) model of the unit cell can be used within a general and accurate numerical SEA framework. In this work, such framework is extended to account for structural-acoustic coupling. Resonant as well as non-resonant acoustic and structural paths are formulated. The effect of any acoustic treatment applied to coupling areas is considered by means of a Generalized Transfer Matrix (TM) approach. Moreover, the formulation employs a definition of pressure loads based on the wavenumber-frequency spectrum, hence allowing for general sources to be fully represented without simplifications. Validations cases are presented to show the effectiveness and generality of the approach.


2021 ◽  
Author(s):  
Rashique Iftekhar Rousseau ◽  
Abdel-Hakim Bouzid ◽  
Zijian Zhao

Abstract The axial stiffnesses of the bolt and clamped members of bolted joints are of great importance when considering their integrity and capacity to withstand external loads and resist relaxation due to creep. There are many techniques to calculate the stiffnesses of the joint elements using finite element (FE) modeling, but most of them are based on the displacement of nodes that are selected arbitrarily; therefore, leading to inaccurate values of joint stiffness. This work suggests a new method to estimate the stiffnesses of the bolt and clamped members using FE analysis and compares the results with the FE methods developed earlier and also with the existing analytical models. A new methodology including an axisymmetric finite element model of the bolted joint is proposed in which the bolts of different sizes ranging from M6 to M36 are considered for the analysis to generalize the proposed approach. The equivalent bolt length that includes the contribution of the thickness of the bolt head and the bolt nominal diameter to the bolt stiffness is carefully investigated. An equivalent bolt length that accounts for the flexibility of the bolt head is proposed in the calculation of the bolt stiffness and a new technique to accurately determine the stiffness of clamped members are detailed.


2005 ◽  
Vol 127 (1) ◽  
pp. 33-39 ◽  
Author(s):  
M. Huang ◽  
X. Niu ◽  
P. Shrotriya ◽  
V. Thompson ◽  
D. Rekow ◽  
...  

This paper presents the results of recent experimental and finite element studies of contact damage in model dental multilayered systems with equivalent elastic properties to those of crown/join/dentin layers that are found in dental restorations. Subsurface radial cracks are observed to form after Hertzian indentation fatigue loading. In order to explain the possible failure mechanisms, the viscous deformation of the foundation (dentinlike ceramic filled polymer) and epoxy join layers are measured. Finite element and analytical models are then developed in an effort to explain the observed contact-induced deformation of the composite multilayered system. Our results suggest that: viscous deformation of the join and foundation layers can give rise to increased tensile stresses in the top elastic layers (glass or zirconia); defects at the bottom of the top layers (induced by grinding steps before crown attachment) are also shown to promote ratcheting phenomena that can lead to stress build-up in the top layers; and viscous flow of the cement can cause the subcritical crack growth in the dental ceramics.


2009 ◽  
Vol 76 (6) ◽  
Author(s):  
I. Quintana Alonso ◽  
N. A. Fleck

The tensile fracture strength of a sandwich panel, with a center-cracked core made from an elastic-brittle diamond-celled honeycomb, is explored by analytical models and finite element simulations. The crack is on the midplane of the core and loading is normal to the faces of the sandwich panel. Both the analytical models and finite element simulations indicate that linear elastic fracture mechanics applies when a K-field exists on a scale larger than the cell size. However, there is a regime of geometries for which no K-field exists; in this regime, the stress concentration at the crack tip is negligible and the net strength of the cracked specimen is comparable to the unnotched strength. A fracture map is developed for the sandwich panel with axes given by the sandwich geometry. The effect of a statistical variation in the cell-wall strength is explored using Weibull theory, and the consequences of a stochastic strength upon the fracture map are outlined.


2001 ◽  
Vol 28 (3) ◽  
pp. 541-544 ◽  
Author(s):  
Wael Bekheet ◽  
Yasser Hassan ◽  
AO Abd El Halim

Rutting is one of the well-recognized road surface distresses in asphalt concrete pavements that can affect the pavement service life and traffic safety. Previous studies have shown that the shear strength of asphalt concrete pavements is a fundamental property in resisting rutting. Laboratory investigation has shown that improving the shear strength of the asphalt concrete mix can reduce surface rutting by more than 30%, and the SUPERPAVE mix design method has acknowledged the importance of the shear resistance of asphalt mixes as a fundamental property in resisting deformation of the pavement. An in situ shear strength testing facility was developed at Carleton University, and a more advanced version of this facility is currently under development in cooperation with the Transportation Research Board and the Ontario Ministry of Transportation. In using this facility, a circular area of the pavement surface is forced to rotate about a normal axis by applying a torque on a circular plate bonded to the surface. The pavement shear strength is then related to the maximum torque. This problem has been solved mathematically in the literature for a linear, homogeneous, and isotropic material. However, the models for other material properties are mathematically complicated and are not applicable to all cases of material properties. Therefore, developing a model that can accurately analyze the behaviour of asphalt concrete pavements during the in situ shear test has proven pivotal. This paper presents the development of a three-dimensional finite element model that can simulate the forces applied while measuring the shear strength of the asphalt concrete pavement. A comparison between the model results and those obtained from available analytical models and field measurements proved the accuracy of the developed model.Key words: shear strength, in situ testing, finite element, asphalt, pavement, modelling.


Sign in / Sign up

Export Citation Format

Share Document