Heat Transfer to Oil Shale in a Closely Spaced Bundle as an Approximation to a Packed Bed

1981 ◽  
Vol 103 (4) ◽  
pp. 307-317
Author(s):  
K. S. Udell ◽  
H. R. Jacobs

The heat transfer to a single cylindrical sample of oil shale in a staggered tube bundle was studied both numerically and experimentally in order to evaluate the thermal and chemical processes associated with the retorting of oil shale in packed beds particular to in-situ processing. The cylinders were subjected to constant gas temperatures and to gas temperature histories experienced in an actual combustion retort. The results of the numerical modeling were compared with the experimental data in order to evaluate the model’s performance. It was found that the model satisfactorily described the thermal processes experienced during the combustion retorting of oil shale within the limits of the accuracy of published data on oil shale thermal properties and chemical kinetics. Net heat transfer to cylindrical oil shale samples in a staggered bundle configuration was also calculated and was shown to nearly duplicate published data related to gas-solid heat transfer in a packed bed combustion retort.

1968 ◽  
Vol 8 (03) ◽  
pp. 231-240 ◽  
Author(s):  
Allen L. Barnes ◽  
Allen M. Rowe

Abstract A heat transfer study was made of hot gas injection into oil shale through wells interconnected by vertical fractures. This analysis involved the simultaneous numerical solution of a nonlinear, second-order partial differential equation that describes two-dimensional conduction heat transfer in oil shale and a non linear first-order partial differential equation that describes convection heat transfer in the fractures. Three nonlinear, temperature-dependent coefficients were used in this work; they are thermal conductivity, thermal capacity and retorting endothermic heat losses of oil shale. Vertical fractures were considered to be of finite height. Although vertical conduction heat transfer was not considered, an estimate of the error resulting from this limitation was made. How retorting efficiency was affected by injected gas temperature, injection rate, system geometry, cyclic injection and time were investigated. Results from this study show that the rate of retorting oil shale is a direct function of both injection temperature and rate, and the theoretical producing air-oil ratio:(AOR) is an inverse function of temperature. Retorting rates are constant until "breakthrough" of the 700 F isotherm at the producing. well, assuming constant injection parameters. Retorting rates for bounded systems are higher than the analogous unbounded systems and likewise AOR's are less. The use of an alternating injection-soak routine with high injection rates is less efficient than continuous injection at lower rates. These results indicate that injection temperatures on the order of 2000 F or greater may give theoretical AOR's in the economic range. Introduction Over half of the known oil shale reserves are located in the U.S., and most of them lie in the Piceance Creek basin of Western Colorado. The Colorado oil shale outcrops on the edges of the Piceance Greek Basin. At the outcrops the shale beds are relatively thin, from 25 to 50 ft thick. In the center of the basin the oil shale is as great as 2,000 ft thick and is covered with 1,000 ft of overburden. It has been estimated that there are over 1,000 billion bbl of oil in shales having an oil content over 15 gal/ton in this basin. Oil shale does not contain free oil but an organic matter called kerogen. Kerogen yields petroleum hydrocarbons by destructive distillation. It must be heated to approximately 700 F, at which temperature it decomposes into shale oil, gases and coke. The U.S. Bureau of Mines and, more recently, oil companies have conducted considerable research on surface retorting methods to economically recover oil from this shale. Another approach to exploit the oil shale deposits, in particular that portion having 1,000 ft of overburden, is to retort the oil shale in place and produce the liquid and gaseous hydrocarbons through wells drilled into the shale. Some research has been done on this approach. There are several variations to the in situ retorting approach. These variations fall into one of two groups, depending upon the geometry of the system:retorting in a highly fractured or broken up matrix;retorting from single fractures between production and injection wells. The latter is the group studied. Several investigators, using various assumptions, have studied flow of heat through horizontal systems. The objective of this work was to make a heat transfer study of in situ retorting oil shale by hot gas injection through wells interconnected by single vertical fractures of finite height. The oil shale thermal conductivity, thermal capacity and retorting endothermic heat losses were considered to be functions of temperature. SPEJ P. 231ˆ


2021 ◽  
Author(s):  
Christopher Penny

Heat transfer to small cylinders within a porous media has been experimentally and analytically studied extensively over a varying degree of sample and particle sizes and fluid flow regimes. In general, the observations, trends and empirical correlations developed for these systems do not accurately extrapolate down to small cylinders operating under the packed bed condition. The objective of this research is to develop an empirical correlation that expresses the Nusselt number of small cylinders immersed horizontally within a packed bed subject to forced convection heat transfer, in terms of the pertinent test parameters and material properties. Heat transfer to small cylinders within a porous media has been experimentally and analytically studied extensively over a varying degree of sample and particle sizes and fluid flow regimes. In general, the observations, trends and empirical correlations developed for these systems do not accurately extrapolate down to small cylinders operating under the packed bed condition. The objective of this research is to develop an empirical correlation that expresses the Nusselt number of small cylinders immersed horizontally within a packed bed subject to forced convection heat transfer, in terms of the pertinent test parameters and material properties.A set of seven small cylinders ranging in size from 1.27 to 9.53mm were resistively heated within a 311mm diameter lab-scale packed bed. The porous medium in which the samples were immersed was fine alumina oxide sand, with mean particle sizes ranging from 145 to 33μm. Four separate Type K thermocouples were used to measure temperatures at pertinent locations within the apparatus: bed temperature, inner sample temperature, left and right sample temperatures. The apparatus was operated under flow rates up until incipient fluidization. The trends observed in this research compared well with published data, though the correlations developed from other research consistently under-predicted the heat transfer capacity within the packed bed. The correlation that was developed for calculating the mean Nusselt number was accurate to within ±15% for the entire range of tested and published data.


1981 ◽  
Vol 103 (2) ◽  
pp. 138-146 ◽  
Author(s):  
P. J. Hommert ◽  
C. E. Tyner

The extensive oil shale reserves of the United States are now under development as an energy source. One of the approaches for extracting oil from shale is the so-called modified in-situ retort. The operation of such retorts for maximum yield requires an understanding of oil loss mechanisms so that operating strategies that minimize these losses can be developed. The present modeling capabilities for describing the behavior and yield from a modified in-situ retort are discussed. Two models that have been subject to comparison with laboratory retorts are described. The first is a one-dimensional model that treats the retort as a packed bed reactor; the second is a quasi-two-dimensional examination of block retorting. Both models are capable of predicting retorting rates, off-gas composition and oil yield losses to coking and combustion. The major need for modeling now is expansion to multi-dimensional simulation.


2021 ◽  
Author(s):  
Christopher Penny

Heat transfer to small cylinders within a porous media has been experimentally and analytically studied extensively over a varying degree of sample and particle sizes and fluid flow regimes. In general, the observations, trends and empirical correlations developed for these systems do not accurately extrapolate down to small cylinders operating under the packed bed condition. The objective of this research is to develop an empirical correlation that expresses the Nusselt number of small cylinders immersed horizontally within a packed bed subject to forced convection heat transfer, in terms of the pertinent test parameters and material properties. Heat transfer to small cylinders within a porous media has been experimentally and analytically studied extensively over a varying degree of sample and particle sizes and fluid flow regimes. In general, the observations, trends and empirical correlations developed for these systems do not accurately extrapolate down to small cylinders operating under the packed bed condition. The objective of this research is to develop an empirical correlation that expresses the Nusselt number of small cylinders immersed horizontally within a packed bed subject to forced convection heat transfer, in terms of the pertinent test parameters and material properties.A set of seven small cylinders ranging in size from 1.27 to 9.53mm were resistively heated within a 311mm diameter lab-scale packed bed. The porous medium in which the samples were immersed was fine alumina oxide sand, with mean particle sizes ranging from 145 to 33μm. Four separate Type K thermocouples were used to measure temperatures at pertinent locations within the apparatus: bed temperature, inner sample temperature, left and right sample temperatures. The apparatus was operated under flow rates up until incipient fluidization. The trends observed in this research compared well with published data, though the correlations developed from other research consistently under-predicted the heat transfer capacity within the packed bed. The correlation that was developed for calculating the mean Nusselt number was accurate to within ±15% for the entire range of tested and published data.


1986 ◽  
Vol 108 (4) ◽  
pp. 907-912 ◽  
Author(s):  
A. Goshayeshi ◽  
J. R. Welty ◽  
R. L. Adams ◽  
N. Alavizadeh

An experimental study is described in which time-averaged local heat transfer coefficients were obtained for arrays of horizontal tubes immersed in a hot fluidized bed. Bed temperatures up to 1005 K were achieved. Bed particle sizes of 2.14 mm and 3.23 mm nominal diameter were employed. An array of nine tubes arranged in three horizontal rows was used. The 50.8 mm (2 in.) diameter tubes were arranged in an equilateral triangular configuration with 15.24 cm (6 in.) spacing between centers. The center tube in each of the three rows in the array was instrumented providing data for local heat flux and surface temperature at intervals of 30 deg from the bottom to the top—a total of seven sets of values for each of the center tubes. The three sets of data are representative of the heat transfer behavior of tubes at the bottom, top, and in the interior of a typical array. Data were also obtained for a single horizontal tube to compare with the results of tube bundle performance. Superficial velocities of high-temperature air ranged from the packed-bed condition through approximately twice the minimum fluidization level. Comparisons with results for a single tube in a bubbling bed indicate only slight effects on local heat transfer resulting from the presence of adjacent tubes. Tubes in the bottom, top, and interior rows also exhibited different heat transfer performance.


2021 ◽  
Vol 39 (2) ◽  
pp. 417-423
Author(s):  
Pengfei Jiang ◽  
Danlei Zhang ◽  
Bin Li ◽  
Chao Song

An in-situ pyrolysis technology was proposed for shallow oil shale: drilling horizontal wells to the oil shale formation, connecting the horizontal well sections through hydraulic fracturing, injecting nitrogen from the surface to bottomhole, heating up the nitrogen to a high temperature at the bottom, and directly using the high-temperature nitrogen for oil shale pyrolysis. Then, a mathematical model was established for the heat transfer within the oil shale, and a simplified physical model was created for in-situ pyrolysis of oil shale, and used to simulate the heat transfer process. The simulation results show that, with the extension of heating time, the area of effectively pyrolyzed oil shale formation took up an increasingly large proportion of the total cross-sectional area of the formation; however, the increase of the pyrolysis area ratio was rather slow, and the temperature was unevenly distributed in the formation after a long duration of heating. Therefore, the 300d in-situ heating was split into two stages: 250d of heating in the heating well and 50d of heating in the production well. The two-stage heating maximized the heating area of oil shale, and heated 57% of the cross-sectional area up to 400℃, ensuring the effectiveness of pyrolysis. Moreover, this heating scheme ensured an even distribution of temperature in oil shale formation, a high energy utilization, and a desirable heating effect.


Author(s):  
Yu. P. Morozov

Based on the solution of the problem of non-stationary heat transfer during fluid motion in underground permeable layers, dependence was obtained to determine the operating time of the geothermal circulation system in the regime of constant and falling temperatures. It has been established that for a thickness of the layer H <4 m, the influence of heat influxes at = 0.99 and = 0.5 is practically the same, but for a thickness of the layer H> 5 m, the influence of heat inflows depends significantly on temperature. At a thickness of the permeable formation H> 20 m, the heat transfer at = 0.99 has virtually no effect on the thermal processes in the permeable formation, but at = 0.5 the heat influx, depending on the speed of movement, can be from 50 to 90%. Only at H> 50 m, the effect of heat influx significantly decreases and amounts, depending on the filtration rate, from 50 to 10%. The thermal effect of the rock mass with its thickness of more than 10 m, the distance between the discharge circuit and operation, as well as the speed of the coolant have almost no effect on the determination of the operating time of the GCS in constant temperature mode. During operation of the GCS at a dimensionless coolant temperature = 0.5, the velocity of the coolant is significant. With an increase in the speed of the coolant in two times, the error changes by 1.5 times.


2018 ◽  
Author(s):  
Devon Jakob ◽  
Le Wang ◽  
Haomin Wang ◽  
Xiaoji Xu

<p>In situ measurements of the chemical compositions and mechanical properties of kerogen help understand the formation, transformation, and utilization of organic matter in the oil shale at the nanoscale. However, the optical diffraction limit prevents attainment of nanoscale resolution using conventional spectroscopy and microscopy. Here, we utilize peak force infrared (PFIR) microscopy for multimodal characterization of kerogen in oil shale. The PFIR provides correlative infrared imaging, mechanical mapping, and broadband infrared spectroscopy capability with 6 nm spatial resolution. We observed nanoscale heterogeneity in the chemical composition, aromaticity, and maturity of the kerogens from oil shales from Eagle Ford shale play in Texas. The kerogen aromaticity positively correlates with the local mechanical moduli of the surrounding inorganic matrix, manifesting the Le Chatelier’s principle. In situ spectro-mechanical characterization of oil shale will yield valuable insight for geochemical and geomechanical modeling on the origin and transformation of kerogen in the oil shale.</p>


Sign in / Sign up

Export Citation Format

Share Document