The Integrated Approach to a Gas Turbine Topping Cycle Cogeneration System

1984 ◽  
Vol 106 (4) ◽  
pp. 731-736 ◽  
Author(s):  
H. Leibowitz ◽  
E. Tabb

Under Gas Research Institute (GRI) sponsorship, a new gas turbine cogeneration system was developed by Mechanical Technology, Inc., (MTI) for installation at a General Motors plant in early 1985. Specific emphasis was placed on system integration. A single, prime-reliable drive train and a single control center replace a wide assortment of nonintegrated, free-standing power drives and control centers. On-line availability, installation costs, and overall user acceptance are improved. The cogeneration set produces 3 MWe and 8,860 kg/hr (19,500 lb/hr) of 1825 kPa (250 psig) saturated steam using an Allison 501-KH gas turbine and a natural circulation waste heat boiler. The system is designed for multifuel operation using either natural gas or distillate oil. A steam injection feature is employed to increase output to 4 MWe when process steam demand diminishes. The system is prepackaged, skid mounted, and delivered in four modules: one each for the machinery, duct burner, waste heat boiler, and controls.

Author(s):  
K. S. Varma ◽  
Asgharali I. Khandwawala ◽  
S. A. Asif

In the present study a stationary open cycle gas turbine plant, including a thermal regenerator has been theoretically analyzed to assess the impact of steam addition in combustion air, on its performance. the effect of varying steam upto 15% air at different pressure ratios and turbine inlet temperatures have been reported. Mixing of steam in air results in higher values of cycle efficiency and increased specific work output, feasibility to generate steam needed for the purpose in a waste heat boiler have also been studied.


Author(s):  
Carlo M. Bartolini ◽  
Danilo Salvi

The steam generated through the use of waste heat recovered from a steam injection gas turbine generally exceeds the maximum mass of steam which can be injected into steam injection gas turbine. The ratio between the steam and air flowing into the engine is not more than 10–15%, as an increase in the pressure ratio can cause the compressor to stall. Naturally, the surplus steam can be utilized for a variety of alternative applications. During the warmer months, the ambient temperature increases and results in reduced thermal efficiency and electrical capacity. An inlet air cooling system for the compressor on a steam injection gas turbine would increase the rating and efficiency of power plants which use this type of equipment. In order to improve the performance of steam injection gas turbines, the authors investigated the option of cooling the intake air to the compressor by harnessing the thermal energy not used to produce the maximum quantity of steam that can be injected into the engine. This alternative use of waste energy makes it possible to reach maximum efficiency in terms of waste recovery. This study examined absorption refrigeration technology, which is one of the various systems adopted to increase efficiency and power rating. The system itself consists of a steam injection gas turbine and a heat recovery and absorption unit, while a computer model was utilized to evaluate the off design performance of the system. The input data required for the model were the following: an operating point, the turbine and compressor curves, the heat recovery and chiller specifications. The performance of an Allison 501 KH steam injection gas plant was analyzed by taking into consideration representative ambient temperature and humidity ranges, the optimal location of the chiller in light of all the factors involved, and which of three possible air cooling systems was the most economically suitable. In order to verify the technical feasibility of the hypothetical model, an economic study was performed on the costs for upgrading the existing steam injection gas cogeneration unit. The results indicate that the estimated pay back period for the project would be four years. In light of these findings, there are clear technical advantages to using gas turbine cogeneration with absorption air cooling in terms of investment.


Author(s):  
Andrew Banta

California State University, Sacramento, has constructed and put into service a stand alone cogeneration laboratory. The major components are a 75 kW gas turbine and generator, a waste heat boiler, and a 10 ton absorption chiller. Initial testing has been completed with efforts concentrating on the gas turbine engine and the absorption chiller. A two part thermodynamic performance analysis procedure has been developed to analyze the cogeneration plant. A first law energy balance around the gas turbine determines the heat into the engine. A Brayton cycle analysis of the gas turbine engine is then compared with the measured performance. While this engine is quite small, this method of analysis gives very consistent results and can be applied to engines of all sizes. Careful attention to details is required to obtain agreement between the calculated and measured outputs; typically they are within 10 to 15 percent. In the second part of the performance analysis experimental operation of the absorption chiller has been compared to that specified by the manufacturer and a theoretical cycle analysis. While the operation is within a few percent of that specified by the manufacturer, there are some interesting differences when it is compared to a theoretical analysis.


Author(s):  
R. Bhargava ◽  
M. Bianchi ◽  
G. Negri di Montenegro ◽  
A. Peretto

This paper presents a thermo-economic analysis of an intercooled, reheat (ICRH) gas turbine, with and without recuperation, for cogeneration applications. The optimization analyses of thermodynamic parameters have permitted to calculate variables, such as low-pressure compressor pressure ratio, high-pressure turbine pressure ratio and gas temperature at the waste heat recovery unit inlet while maximizing electric efficiency and “Energy Saving Index”. Subsequently, the economic analyses have allowed to evaluate return on the investment, and the minimum value of gross payout period, for the cycle configurations of highest thermodynamic performance. In the present study three sizes (100 MW, 20 MW and 5 MW) of gas turbines have been examined. The performed investigation reveals that the maximum value of electric efficiency and “Energy Saving Index” is achieved for a large size (100 MW) recuperated ICRH gas turbine based cogeneration system. However, a non-recuperated ICRH gas turbine (of 100 MW) based cogeneration system provides maximum value of return on the investment and the minimum value of gross payout period compared to the other gas turbine cycles, of the same size and with same power to heat ratio, investigated in the present study. A comprehensive thermo-economic analysis methodology, presented in this paper, should provide useful guidelines for preliminary sizing and selection of gas turbine cycle for cogeneration applications.


2019 ◽  
Vol 4 (4) ◽  
pp. 17-23
Author(s):  
Barikuura Gbonee ◽  
Barinyima Nkoi ◽  
John Sodiki

This research presents the performance assessment of a combined heat and power plant operating in the Niger Delta region of Nigeria. The main focus is to evaluate the performance parameters of the gas turbine unit and the waste heat recovery generator section of the combined-heat-and-power plant. Data were gathered from the manufacturer’s manual, field and panel operator’s log sheets and the human machine interface (HMI) monitoring screen. The standard thermodynamic equations were used to determine the appropriate parameters of the various components of the gas turbine power plant as well as that of the heat exchangers of the heat recovery steam generator (HRSG). The outcome of all analysis indicated that for every 10C rise in ambient temperature of the compressor air intake there is an average of 0.146MW drop in the gas turbine power output, a fall of about 0.176% in the thermal efficiency of the plant, a decrease of about 2.46% in the combined-cycle thermal efficiency and an increase of about 0.0323 Kg/Kwh in specific fuel consumption of the plant. In evaluating the performance of the Waste Heat Boiler (WHB), the principle of heat balance above pinch was applied to a single steam pressure HRSG exhaust gas/steam temperature profile versus exhaust heat flow. Hence, the evaporative capacity (steam flow) of the HRSG was computed from the total heat transfer in the super-heaters and evaporator tubes using heat balance above pinch. The analysis revealed that the equivalent evaporation, evaporative capacity (steam flow) and the HRSG thermal efficiency depends on the heat exchanger’s heat load and its effective maintenance.


Author(s):  
Ir. Ted Wiekmeijer

The paper will deal with new developments on basis of the ideas, laid down in ASME paper 90-GT-180, presented at the Brussels Conference. In this former paper a combination of incinerators and cogen systems was described. New development show, that some of these ideas can also be used in cogen plants, in which all steam is raised and superheated in a waste heat boiler behind a high grade fuel fired gas turbine (natural gas or equivalent). This paper will deal give a description of the new system. A comparison will be made with conventional cogen systems, comprising of a gas turbine, a dual pressure non-fired waste heat boiler and a condensing steam turbine. On basis of a particular case study both the technical and financial performances will be compared with each other.


Author(s):  
Ruiyang Li ◽  
Haisu Huang ◽  
Hongling Yu ◽  
Runge Wang ◽  
Jianming Hui ◽  
...  

1988 ◽  
Vol 110 (1) ◽  
pp. 8-16 ◽  
Author(s):  
G. Cerri ◽  
G. Arsuffi

A simple steam-injected gas turbine cycle equipped with an exhaust heat recovery section is analyzed. The heat recovery section consists of a waste heat boiler, which produces the steam to be injected into the combustion chamber, and a self-production demineralized water plant based on a distillation process. This plant supplies the pure water needed in the mixed steam-gas cycle. Desalination plant requirements are investigated and heat consumption for producing distilled water is given. Overall steam-gas turbine cycle performance and feasibility of desalting plants are investigated in a firing temperature range from 1000.°C to 1400.°C for various compressor pressure and steam-to-air injection ratios. An example is reported.


1979 ◽  
Vol 101 (2) ◽  
pp. 217-227 ◽  
Author(s):  
W. E. Fraize ◽  
C. Kinney

The effect of injecting steam generated by exhaust gas waste heat into a gas turbine with 3060°R turbine inlet temperature has been analyzed. Two alternate steam injection cycles are compared with a combined cycle using a conventional steam bottoming cycle. A range of compression ratios (8, 12, 16, and 20) and water mass injection ratios (0 to 0.4) were analyzed to determine effect on net turbine power output per pound of air and cycle thermodynamic efficiency. A water/fuel cost tradeoff analysis is also provided. The results indicate promising performance and economic advantages of steam injected cycles relative to more conventional utility power cycles. Application to coal-fired configuration is briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document