A Theoretical Model for Rotating Stall in the Vaneless Diffuser of a Centrifugal Compressor

1985 ◽  
Vol 107 (2) ◽  
pp. 507-513 ◽  
Author(s):  
P. Frigne ◽  
R. Van den Braembussche

A theoretical model for rotating stall in the vaneless diffuser of a centrifugal compressor is presented. It consists of a time-evolutive calculation of the strong interaction between the inviscid flow core and the unsteady boundary layers along the walls. It is shown that, depending on the diffuser geometry and the diffuser inlet flow angle, a transient perturbation of the outlet static pressure will generate a rotating flow pattern, if the periodicity of this perturbation corresponds to the experimentally observed number of cells. The relative rotational speed and the phase relation between the velocity and the flow angle variations are also in agreement with experimental data.

1996 ◽  
Vol 118 (1) ◽  
pp. 123-127 ◽  
Author(s):  
Yoshinobu Tsujimoto ◽  
Yoshiki Yoshida ◽  
Yasumasa Mori

Rotating stalls in vaneless diffusers are studied from the viewpoint that they are basically two-dimensional inviscid flow instability under the boundary conditions of vanishing velocity disturbance at the diffuser inlet and of vanishing pressure disturbance at the diffuser outlet. The linear analysis in the present report shows that the critical flow angle and the propagation velocity are functions of only the diffuser radius ratio. It is shown that the present analysis can reproduce most of the general characteristics observed in experiments: critical flow angle, propagation velocity, velocity, and pressure disturbance fields. It is shown that the vanishing velocity disturbance at the diffuser inlet is caused by the nature of impellers as a “resistance” and an “inertial resistance,” which is generally strong enough to suppress the velocity disturbance at the diffuser inlet. This explains the general experimental observations that vaneless diffuser rotating stalls are not largely affected by the impeller.


Author(s):  
Teemu Turunen-Saaresti ◽  
Aki-Pekka Gro¨nman ◽  
Ahti Jaatinen

A centrifugal compressor is often equipped with a vaneless diffuser because the operation range of a vaneless diffuser is wider than the operation range of vaned diffuser, and the geometry of the vaneless diffuser is simple and inexpensive. The flow field after the centrifugal compressor rotor is highly complicated and the velocity is high. A moderate amount of this velocity should be recovered to the static pressure. It is important to study the flow field in the vaneless diffuser in order to achieve guidelines for design and an optimal performance. In this article, the experimental study of the pinch in the vaneless diffuser is conducted. Five different diffuser heights were used, b/b2 = 1, b/b2 = 0.903, b/b2 = 0.854, b/b2 = 0.806 and b/b2 = 0.903 (shroud). In three of the cases, the pinch was made to both walls of the diffuser, hub and shroud, and in one case, the pinch was made to the shroud wall. The total and the static pressure, the total temperature and the flow angle were measured at the diffuser inlet and outlet by using a cobra-probe, kiel-probes and flush-mounted pressure taps. In addition, the static pressure in the diffuser was measured at three different radius ratios. The overall performance, the mass flow, the pressure ratio and the isentropic efficiency of the compressor stage were also monitored. Detailed flow field measurements were carried out at the design rotational speed and at the three different mass flows (close to the surge, design and close to the choke). The isentropic efficiency and the pressure ratio of the compressor stage was increased with the pinched diffuser. The efficiency of the rotor and the diffuser was increased, whereas the efficiency of the volute/exit cone was decreased. The pinch made to the shroud wall was the most effective. The pinch made the flow angle more radial and increased the velocity at the shroud where the secondary flow (passage wake) from the rotor is present.


Author(s):  
Zitian Niu ◽  
Zhenzhong Sun ◽  
Baotong Wang ◽  
Xinqian Zheng

Abstract Rotating stall is an important unstable flow phenomenon that leads to performance degradation and limits the stability boundary in centrifugal compressors. The volute is one of the sources to induce the non-axisymmetric flow in a centrifugal compressor, which has an important effect on the performance of compressors. However, the influence of volute on rotating stall is not clear. Therefore, the effects of volute on rotating stall by experimental and numerical simulation have been explored in this paper. It’s shown that one rotating stall cell generates in a specific location and disappears in another specific location of the vaneless diffuser as a result of the distorted flow field caused by the volute. Also, the cells cannot stably rotate in a whole circle. The frequency related to rotating stall captured in the experiment is 43.9% of the impeller passing frequency (IPF), while it is 44.7% of IPF captured by three-dimensional unsteady numerical simulation, which proves the accuracy of the numerical method in this study. The numerical simulation further reveals that the stall cell initialized in a specific location can be split into several cells during the evolution process. The reason for this is that the blockage in the vaneless diffuser induced by rotating stall is weakened by the mainstream from the impeller exit to make one initialized cell disperse into several ones. The volute has an important influence on the generation and evolution process of the rotating stall cells of compressors. By optimizing volute geometry to reduce the distortion of the flow field, it is expected that rotating stall can be weakened or suppressed, which is helpful to widen the operating range of centrifugal compressors.


Author(s):  
Chuang Gao ◽  
Weiguang Huang ◽  
Haiqing Liu ◽  
Hongwu Zhang ◽  
Jundang Shi

This paper concerns with the numerical and experimental aspects of both steady and unsteady flow behavior in a centrifugal compressor with vaneless diffuser and downstream collector. Specifically, the appearance of flow instabilities i.e., rotating stall and surge is investigated in great detail. As the first step, the static performance of both stage and component was analyzed and possible root cause of system surge was put forward based on the classic stability theory. Then the unsteady pressure data was utilized to find rotating stall and surge in frequency domain which could be classified as mild surge and deep surge. With the circumferentially installed transducers at impeller inlet, backward travelling waves during stall ramp could be observed. The modes of stall waves could be clearly identified which is caused by impeller leading edge flow recirculation at Mu = 0.96. However, for the unstable flow at Mu = 1.08, the system instability seems to be caused by reversal flow in vaneless diffuser where the pressure oscillation was strongest. Thus steady numerical simulation were performed and validated with the experimental performance data. With the help of numerical analysis, the conjectures are proved.


2004 ◽  
Vol 10 (6) ◽  
pp. 433-442 ◽  
Author(s):  
Giovanni Ferrara ◽  
Lorenzo Ferrari ◽  
Leonardo Baldassarre

The rotating stall is a key problem for achieving a good working range of a centrifugal compressor and a detailed understanding of the phenomenon is very important to anticipate and avoid it. Many experimental tests have been planned by the authors to investigate the influence on stall behavior of different geometrical configurations. A stage with a backward channel upstream, a 2-D impeller with a vaneless diffuser and a constant cross-section volute downstream, constitute the basic configuration. Several diffuser types with different widths, pinch shapes, and diffusion ratios were tested. The stage was instrumented with many fast response dynamic pressure sensors so as to characterize inception and evolution of the rotating stall. This kind of analysis was carried out both in time and in frequency domains. The methodology used and the results on phenomenon evolution will be presented and discussed in this article.


Author(s):  
T. Ch. Siva Reddy ◽  
G. V. Ramana Murty ◽  
Prasad Mukkavilli ◽  
D. N. Reddy

Numerical simulation of impeller and low solidity vaned diffuser (LSD) of a centrifugal compressor stage is performed individually using CFX- BladeGen and BladeGenPlus codes. The tip mach number for the chosen study was 0.35. The same configuration was used for experimental investigation for a comparative study. The LSD vane is formed using standard NACA profile with marginal modification at trailing edge. The performance parameters obtained form numerical studies at the exit of impeller and the diffuser have been compared with the corresponding experimental data. These parameters are pressure ratio, polytropic efficiency and flow angle at the impeller exit where as the parameters those have been compared at the exit of diffuser are the static pressure recovery coefficient and the exit flow angle. In addition, the numerical prediction of the blade loading in terms of blade surface pressure distribution on LSD vane has been compared with the corresponding experimental results. Static pressure recovery coefficient and flow angle at diffuser exit is seen to match closely at higher flows. The difference at lower flows could be due to the effect of interaction between impeller and diffuser combinations, as the numerical analysis was done separately for impeller and diffuser and the effect of impeller diffuser interaction was not considered.


2016 ◽  
Vol 101 ◽  
pp. 734-741 ◽  
Author(s):  
Michele Marconcini ◽  
Alessandro Bianchini ◽  
Matteo Checcucci ◽  
Davide Biliotti ◽  
Marco Giachi ◽  
...  

Author(s):  
Xinqian Zheng ◽  
Yun Lin ◽  
Weilin Zhuge ◽  
Yangjun Zhang ◽  
Hideaki Tamaki ◽  
...  

The asymmetric flow field induced by the volute has considerable influence on the performance of a turbocharger centrifugal compressor, especially through its effect on the stability. In this paper, a novel asymmetric vaneless diffuser treatment with a circumferentially non-axisymmetric diffuser width distribution was firstly developed to enhance the stability of a centrifugal compressor for turbocharger. Design principle of the asymmetric diffuser was proposed based on the asymmetric flow in the compressor. The objective of the asymmetric vaneless diffuser design is to alleviate the flow asymmetry in the diffuser, which requires that the phase of the maximal diffuser width is coincident with the phase of the minimum static pressure in the diffuser. The results of the numerical simulation showed that the designed asymmetric diffuser was able to decrease the magnitude of the pressure distortion induced by the volute and therefore alleviated the negative effect of the volute on compressor stability. Experimental results showed that the designed asymmetric diffuser extended the stable flow range by 28.3% at designed speed compared to the prototype with symmetric diffuser.


Author(s):  
Srinivasa Rao Konakala ◽  
Mukka Govardhan

Efficiency of the centrifugal compressor is affected by non-uniform flow at the exit of the impeller and the losses in the diffuser. This causes a significant loss of total pressure and drop in the performance of a centrifugal compressor. By rotating some portion of stationary vaneless diffuser walls with the speed of the impeller, the shear forces between the flow and diffuser walls are greatly reduced. Thereby improvement in the operating range and performance is achieved. This paper presents CFD studies on the effect of different single wall rotations i.e. hub rotation and shroud rotation of the vaneless diffusers on the overall performance at 10% and 15% extension of impeller walls. It is observed that the performance characteristics of compressors with all RVD models offer higher static pressure recovery and also higher rate of diffusion compared to the base compressor with SVD. It is clear that as extended radius increases from 10% to 15%, substantial improvement of efficiency and reduction of losses are observed for both type of models. Out of two single wall rotation models, SRVD model is able to better mix the jet-wake type of impeller exit flows and minimizes the losses therein and improve the performance of the centrifugal compressor.


Sign in / Sign up

Export Citation Format

Share Document