A New 150-MW High-Efficiency Heavy-Duty Combustion Turbine

1989 ◽  
Vol 111 (2) ◽  
pp. 211-217 ◽  
Author(s):  
A. J. Scalzo ◽  
L. D. McLaurin ◽  
G. S. Howard ◽  
Y. Mori ◽  
H. Hiura ◽  
...  

The 501F 60-Hz Combustion Turbine has been developed jointly by Westinghouse Electric Corporation and Mitsubishi Heavy Industries, Ltd. It continues a long line of large heavy-duty single-shaft combustion turbines by combining the proven efficient and reliable concepts of the W501D5 with the low NOx technology of the MW701D, together with the experience of the advanced cooled MF111. The new engine is described along with the improved evolutionary changes made from previous engines. Planned design and performance verification programs including model, full-scale component testing, and full-load engine tests are described. Mature output and efficiency in simple cycle mode will be 145 MW and 34 percent, respectively, with expected combined cycle efficiencies in excess of 50 percent.

1996 ◽  
Vol 118 (3) ◽  
pp. 572-577 ◽  
Author(s):  
L. Southall ◽  
G. McQuiggan

The 501G 60-Hz combustion turbine has been developed jointly by Westinghouse Electric Corporation, Mitsubishi Heavy Industries, Ltd., and FiatAvio. It continues a long line of large heavy-duty single-shaft combustion turbines by combining the proven efficient and reliable concepts of the 501F with the latest advances in aero technology via the Westinghouse Alliance with Rolls-Royce. The output of the 501G is over 230 MW with a combined cycle net efficiency of 58 percent. This makes the 501G the largest 60-Hz combustion turbine in the world and also the most efficient.


Author(s):  
L. Southall ◽  
G. McQuiggan

The 501G 60-Hz Combustion Turbine has been developed jointly by Westinghouse Electric Corporation, Mitsubishi Heavy Industries, Ltd., and FiatAvio. It continues a long line of large heavy-duty single-shaft combustion turbines by combining the proven efficient and reliable concepts of the 501F with the latest advances in aero technology via the Westinghouse Alliance with Rolls-Royce. The output of the 501G is over 230 MW with a combined cycle net efficiency of 58%. This makes the 501G the largest 60-Hz combustion turbine in the world and also the most efficient.


Author(s):  
Paolo Chiesa ◽  
Giovanni Lozza

Due to their high efficiency and flexibility, aeroderivative gas turbines were often considered as a development basis for intercooled engines, thus providing better efficiency and larger power output. Those machines, originally studied for natural gas, are here considered as the power section of gasification plants for coal and heavy fuels. This paper investigates the matching between intercooled gas turbine, in complex cycle configurations including combined and HAT cycles, and coal gasification processes based on entrained-bed gasifiers, with syngas cooling accomplished by steam production or by full water-quench. In this frame, a good level of integration can be found (i.e. re-use of intercooler heat, availability of cool, pressurized air for feeding air separation units, etc.) to enhance overall conversion efficiency and to reduce capital cast. Thermodynamic aspects of the proposed systems are investigated, to provide an efficiency assessment, in comparison with mare conventional IGCC plants based on heavy-duty gas turbines. The results outline that elevated conversion efficiencies can be achieved by moderate-size intercooled gas turbines in combined cycle, while the HAT configuration presents critical development problems. On the basis of a preliminary cost assessment, cost of electricity produced is lower than the one obtained by heavy-duty machines of comparable size.


Author(s):  
Geoff Myers ◽  
Dan Tegel ◽  
Markus Feigl ◽  
Fred Setzer ◽  
William Bechtel ◽  
...  

The lean, premixed DLN2.5H combustion system was designed to deliver low NOx emissions from 50% to 100% load in both the Frame 7H (60 Hz) and Frame 9H (50 Hz) heavy-duty industrial gas turbines. The H machines employ steam cooling in the gas turbine, a 23:1 pressure ratio, and are fired at 1440 C (2600 F) to deliver over-all thermal efficiency for the combined-cycle system near 60%. The DLN2.5H combustor is a modular can-type design, with 14 identical chambers used on the 9H machine, and 12 used on the smaller 7H. On a 9H combined-cycle power plant, both the gas turbine and steam turbine are fired using the 14-chamber DLN2.5H combustion system. An extensive full-scale, full-pressure rig test program developed the fuel-staged dry, low emissions combustion system over a period of more than five years. Rig testing required test stand inlet conditions of over 50 kg/s at 500 C and 28 bar, while firing at up to 1440 C, to simulate combustor operation at base load. The combustion test rig simulated gas path geometry from the discharge of the annular tri-passage diffuser through the can-type combustion liner and transition piece, to the inlet of the first stage turbine nozzle. The present paper describes the combustion system, and reports emissions performance and operability results over the gas turbine load and ambient temperature operating range, as measured during the rig test program.


Author(s):  
Luca Aurelio ◽  
Paolo Battagli ◽  
Dino Bianchi ◽  
Arlie R. Martin ◽  
Leonardo Tognarelli

In mid-’98 it was decided to develop a new high efficiency version of the very successful MS5002 (GE Frame 5 two-shaft), to satisfy the most recent Customer requirements in terms of fuel consumption and environmental impact. The machine was conceived considering different markets, primarily mechanical drive, but also non-Oil&Gas power generation. Power class is 30 MW, pressure ratio is 17:1, simple cycle efficiency is over 36% and combined cycle efficiency approximately 51%. The new model retains features that contributed to the success of its predecessors. The main ones are the full heavy-duty concept for on-site maintenance, the moderate firing temperature (compared with state of the art) for highest reliability, the two-shaft design with free power turbine for mechanical drive use, the high heat recovery capability. Achievement of high cycle efficiency with low firing temperature is possible thanks the advanced tools used for the definition, design and optimization of airfoils, clearances, leakages and distribution of cooling flows. Aero-thermal design was largely based on state of the art 3D CFD and on sophisticated airfoil cooling techniques of the same type extensively used in aircraft engine development. The dry-low-emissions combustion system design is derived from the GEPS DLN2.6. A thorough testing program, including the full-scale test of the axial compressor and a full load prototype test, is planned to support development and to validate the design.


Author(s):  
Gerry A. Myers ◽  
Anthony J. B. Jackson

Through an alliance established in 1992 between Westinghouse Electric Corporation and Rolls-Royce plc, a program has been implemented that will bring the industrial Trent aero engine to the power generation marketplace. The Rolls-Royce Trent has been initially sized at 50 MW, with a development potential to higher power ratings, and is offered by Westinghouse as a complete power generation package, the “Trent EconoPac”. The Trent EconoPac sets a new performance standard in the industry with a nominal simple cycle efficiency of 42 percent. It is also ideal for combined cycle and cogeneration applications; a net combined cycle power of 63 MW at 52 percent efficiency can be developed. This paper describes the Trent industrial engine and EconoPac and reviews the development program with emphasis on unique features that benefit the power plant operator.


Author(s):  
Erwin Zauner ◽  
Yau-Pin Chyou ◽  
Frederic Walraven ◽  
Rolf Althaus

Power generation in gas turbines is facing three main challenges today: • Low pollution prescribed by legal requirements. • High efficiency to obtain low operating cost and low CO2 emissions. • High specific power output to obtain low product and installation cost. Unfortunately, some of these requirements are contradictory: high efficiency and specific power force the development towards higher temperatures and pressures which increase NOx emissions and intensify the cooling and material strength problems. A breakthrough can be achieved by applying an energy exchanger as a topping stage. Inherent advantages are the self-cooled cell-rotor which can be exposed to much higher gas temperature than a steady-flow turbine and a very short residence time at peak temperature which keeps NOx emissions under control. The basic idea has been proposed long time ago. Fundamental research has now led to a new energy exchanger concept. Key issues include symmetric pressure-wave processes, partial suppression of flow separation and fluid mixing, as well as quick afterburning in premixed mode. The concept has been proven in a laboratory-scale engine with very promising results. The application of an energy exchanger as a topping stage onto existing gas turbines would increase the efficiency by 17% (relative) and the power by 25%. Since the temperature level in the turbine remains unchanged, the performance improvement can also be fully utilized in combined cycle applications. This process indicates great potentials for developing advanced gas turbine systems as well as for retrofitting existing ones.


Author(s):  
C. F. McDonald ◽  
L. Cavallaro ◽  
D. Kapich ◽  
W. A. Medwid

To meet the energy needs of special terrestrial defense installations, where a premium is placed on high plant efficiency, conceptual studies have been performed on an advanced closed-cycle gas turbine system with a high-temperature gas-cooled reactor (HTGR) as the heat source. Emphasis has been placed on system compactness and plant simplicity. A goal of plant operation for extended periods with no environmental contact had a strong influence on the design features. To realize a high plant efficiency (over 50%) for this mode of operation, a combined cycle was investigated. A primary helium Brayton power conversion system coupled with a Freon bottoming cycle was selected. The selection of a gas turbine power conversion system is very much related to applications where high efficiency is paramount and this can be realized with the utilization of a cold heat sink. Details are presented of the reactor arrangement, power conversion system, major components, installation, and performance for a compact nuclear power plant currently in a very early stage of concept definition.


Author(s):  
Paul E. Scheihing ◽  
Paul W. Pillsbury ◽  
Thomas A. Piaia ◽  
Omer Kitaplioglu

Full scale laboratory tests were performed by the Combustion Turbine Systems Division of the Westinghouse Electric Corporation to explore the feasibility of using catalytic burners in industrial combustion turbines to reduce emissions. Catalytic elements were provided by the Engelhard Industries Division of Engelhard Corporation, and No. 2 distillate fuel was burned in single combustor rig tests at the pressure, airflow, and inlet temperature equivalent to those in a large combustion turbine. Variations of a concept that employed a conventional preburner upstream of a catalytic secondary, and sidewall fuel injection were tested and evaluated for fuel/air presentation to the catalyst. Results indicated ultra-low NOx emissions and that, with development in secondary fuel/air preparation, the concept is technically feasible.


1996 ◽  
Vol 118 (2) ◽  
pp. 316-330 ◽  
Author(s):  
A. J. Scalzo ◽  
R. L. Bannister ◽  
M. DeCorso ◽  
G. S. Howard

This paper reviews the evolution of heavy-duty power generation and industrial combustion turbines in the United States from a Westinghouse Electric Corporation perspective. Westinghouse combustion turbine genealogy began in March of 1943 when the first wholly American designed and manufactured jet engine went on test in Philadelphia, and continues today in Orlando, Florida, with the 230 MW, 501G combustion turbine. In this paper, advances in thermodynamics, materials, cooling, and unit size will be described. Many basic design features such as two-bearing rotor, cold-end drive, can-annular internal combustors, CURVIC clutched turbine disks, and tangential exhaust struts have endured successfully for over 40 years. Progress in turbine technology includes the clean coal technology and advanced turbine systems initiatives of the U.S. Department of Energy.


Sign in / Sign up

Export Citation Format

Share Document