scholarly journals Evaluation of a High Performance Fixed-Ratio Traction Drive

1981 ◽  
Vol 103 (2) ◽  
pp. 410-417 ◽  
Author(s):  
S. H. Loewenthal ◽  
N. E. Anderson ◽  
D. A. Rohn

The results of a test program to evaluate a compact, high performance, fixed-ratio traction drive are presented. This transmission, the Nasvytis Multiroller Traction Drive, is a fixed-ratio, single-stage planetary with two rows of stepped planetrollers. Two versions of the drive were parametrically tested back-to-back at speeds to 73,000 rpm and power levels to 180 kW (240 hp). Parametric tests were also conducted with the Nasvytis drive retrofitted to an automotive gas turbine engine. The drives exhibited good performance, with a nominal peak efficiency of 94 to 96 percent and a maximum speed loss due to creep of approximately 3.5 percent.

1988 ◽  
Vol 110 (4) ◽  
pp. 572-577
Author(s):  
D. J. Folenta

This paper presents a brief description and several illustrations of a new concept of marine reversing gears that utilize high-performance differentially driven epicyclic gear arrangements. This new marine power transmission has the potential to offer high reliability, simplicity, light weight, high mechanical efficiency, compactness, and technological compatibility with aircraft derivative marine gas turbine engines. Further, this new reversing gear minimizes the danger of driving the free turbine in reverse as might be the case with conventional parallel shaft reversing gear arrangements. To illustrate the weight reduction potential, a modern naval ship propulsion system utilizing an aircraft derivative gas turbine engine as the prime mover in conjunction with a conventional parallel shaft reversing gear can be compared to the subject reversing gear differential. A typical 18,642 kW (25,000 hp) marine gas turbine engine might weigh approximately 5000 kg (11,000 lb) and a conventional marine technology parallel shaft reversing gear might weigh on the order of 90,000 to 136,000 kg (200,000 to 300,000 lb). Using gear technology derived from the aircraft industry, a functionally similar differentially driven marine reversing gear might weigh approximately 13,600 kg (30,000 lb).


Author(s):  
R. A. Rackley ◽  
J. R. Kidwell

The Garrett/Ford Advanced Gas Turbine Powertrain System Development Project, authorized under NASA Contract DEN3-167, is sponsored by and is part of the United States Department of Energy Gas Turbine Highway Vehicle System Program. Program effort is oriented at providing the United States automotive industry the technology base necessary to produce gas turbine powertrains competitive for automotive applications having: (1) reduced fuel consumption, (2) multi-fuel capability, and (3) low emissions. The AGT101 powertrain is a 74.6 kW (100 hp), regenerated single-shaft gas turbine engine operating at a maximum turbine inlet temperature of 1644 K (2500 °F), coupled to a split differential gearbox and Ford automatic overdrive production transmission. The gas turbine engine has a single-stage centrifugal compressor and a single-stage radial inflow turbine mounted on a common shaft. Maximum rotor speed is 10,472 rad/sec (100,000 rpm). All high-temperature components, including the turbine rotor, are ceramic. AGT101 powertrain development has been initiated, with testing completed on many aerothermodynamic components in dedicated test rigs and start of Mod I, Build 1 engine testing.


Author(s):  
Carlos J. Mendez ◽  
Ramkumar N. Parthasarathy ◽  
Subramanyam R. Gollahalli

Alcohols serve as an alternate energy resource to the conventional petroleum-based fuels. The objective of this study was to document the performance and emission characteristics of blends of n-propanol and Jet A fuel in a small-scale gas turbine engine. The experiments were conducted in a 30kW gas turbine engine with a single-stage centrifugal flow compressor, annular combustion chamber and a single-stage axial flow turbine. In addition to neat propanol and Jet A fuel, three blends, with 25%, 50% and 75% of propanol by volume, were used as the fuels. The thrust, thrust-specific fuel consumption, and the concentrations of CO and NOx in the exhaust were measured and compared with those measured with Jet A fuel. The engine was operated at the same throttle settings with all the fuels. The operational range of engine rotational speed was shifted downwards with the addition of propanol due to its lower heating value. The thrust specific fuel consumption increased with the addition of propanol, while the CO emission index increased and NOx emission index decreased.


Author(s):  
Jay T. Janton ◽  
Kevin Widdows

The WR21 Intercooled Recuperated (ICR) Gas Turbine Engine is being developed as the prime power plant for future US and Foreign Navy ship applications. The development test program started in July 1994 and is still ongoing. One of the many challenges of the ICR design is the development of the compressors and intercooler (IC) wash system. The integration of the IC between the intermediate pressure compressor (IPC) and high pressure compressor (HPC) is unique to current US Navy applications and has introduced new design considerations from traditional wash development programs that must be addressed. Significant increase in wetted surface area of the heat exchanger (HX) matrix and the radial flow are two design aspects unique to the WR21. This paper reviews the design of the WR21 engine and the challenges it offers to developing both crank and on-line compressor/IC wash systems. The baseline design of the water wash systems are discussed, in addition to the water wash test program and its integration into the overall WR2I development program. Details are also given of the off-engine wash delivery system and salt injection systems in place at the test site. Crank wash test results to date are also presented.


Author(s):  
Stephen A Long ◽  
Stephen L Edney ◽  
Patrick A Reiger ◽  
Michael W Elliott ◽  
Frank Knabe ◽  
...  

For the purpose of assessing combustion effects in a small gas turbine engine, there was a requirement to evaluate the rotating temperature and dynamic characteristics of the power turbine rotor module. This assessment required measurements be taken within the engine, during operation up to maximum power, using rotor mounted thermocouples and strain gauges. The acquisition of this data necessitated the use of a telemetry system that could be integrated into the existing engine architecture without affecting performance. As a result of space constraints, housing of the telemetry module was limited to placement in a hot section. To tolerate the high temperature environment, a cooling system was developed as part of the integration effort to maintain telemetry module temperatures within the limit allowed by the electronics. Finite element thermal analysis was used to guide the design of the cooling system. This was to ensure that sufficient airflow was introduced and appropriately distributed to cool the telemetry cavity, and hence electronics, without affecting the performance of the engine. Presented herein is a discussion of the telemetry system, instrumentation design philosophy, cooling system design and verification, and sample of the results acquired through successful execution of the full engine test program.


1974 ◽  
Author(s):  
G. P. Frigieri

This paper presents the prototype of a large gas turbine new series whose peculiar characteristics make the same very attractive for both base and peak load applications. The gas turbine engine, now in an advanced stage of manufacturing, is scheduled to be bench tested in the last quarter of the year. The major design features of the gas turbine engine together with the prototype test program are described. In addition, the peculiar characteristics of the control system and and package installation are mentioned.


Author(s):  
William J. Hawkins ◽  
Douglas Mathieson ◽  
Chris J. Bruce ◽  
Paul Socoloski

Westinghouse Electric Corporation has teamed with Rolls-Royce to develop an affordable, commercially based Intercooled/Recuperated Gas Turbine Engine System (ICR) for the United States Navy. This engine system known as WR-21 will become the next prime mover on Navy new construction surface combatants. The system development test program for the WR-21 engine system will be carried out at two test sites in geographically different locations. These are the US Navy’s Test Site at the Carderock Division Naval Surface Warfare Center in Philadelphia, Pa. and the Royal Navy’s Admiralty Test House at the Test and Evaluation Establishment, Pyestock in the United Kingdom. This paper will briefly describe the WR-21 engine system with a more detailed discussion of the system development test program itself. This will include descriptions of the system development testing to be performed and the test facilities and data acquisition systems at each test site location. Also discussed are the methods used to establish the required design commonality between each test site to establish test bed cross-calibration and provide test program flexibility and interchangeability of testing at each site.


1980 ◽  
Vol 102 (4) ◽  
pp. 918-923 ◽  
Author(s):  
D. L. Carriere

Descriptions, schematics, equations, and efficiency curves for a unique single shaft gas turbine engine transmission, consisting of a power splitting differential reduction gear combined with either a variable stator torque converter or variable ratio traction drive as a speed variator, and with a current production automatic four-speed gear box as a ratio expander, are contained in this paper.


Author(s):  
P. W. Pichel

This paper summarizes the scope and results to date of a program initiated in 1974 to develop a high-performance, simple-cycle, 10,000-hp engine for application in gas compressor, mechanical drive, and generator set packages. Design philosophy, a detailed description, and component and engine development testing are covered. Future plans for the development program up to the point of production availability in 1978 are also outlined.


Author(s):  
Jay T. Janton ◽  
Chai Uawithya

The WR21 Intercooled Recuperated (ICR) Gas Turbine engine has undergone system level development testing from July of 1994 to December 1999. There have been a total of ten engine builds and 2126 hours of engine operation performed through December of 1999. A significant number of unique development tests (experiments) have been performed over the ten engine builds. The last development test just completed and that was a USN specified 500-hour endurance test from 4 October through 16 December of 1999. All the development testing to date has been performed at the Defense Evaluation and Research Agency (DERA), Pyestock, England which is part of the UK Ministry of Defense (MOD). The last 500-hour endurance test was performed at the Advanced Propulsion & Power Generation Test Site (APPGTS) located at the Naval Surface Warfare Center Carderock Division (NSWCCD), Philadelphia, PA. The system level testing performed has evaluated the gas generator, power turbine, enclosure systems, recuperator, intercooler, and engine electronic controller (EEC). The enclosure systems include two off-engine skids (lube oil module and Intercooler Heat Exchanger module), accessory gearbox, fire protection system, enclosure cooling system, water wash, structureborne and airborne noise, fuel system and air start system. A three-phase development test strategy was employed. The first phase was to demonstrate the ICR technology and identify the highest-risk areas. Due to the unique challenges introduced by the intercooler, recuperator, variable area nozzles, and new EEC the test program was continually reviewed and revised. The second phase focused on component and system improvements. The final phase is the verification of the ICR in a 500-hr endurance test. At the completion of development testing a final design review will be held (DR5), followed by qualification testing. The qualification tests will include a 3150-hr endurance test and shock test. This paper summarizes and discusses the major tests performed during the development phases. The plan for the final development 500-hr endurance test and 3150-hr qualification test will be presented.


Sign in / Sign up

Export Citation Format

Share Document