Finite Element Analysis of a Layered Elastic Solid in Normal Contact With a Rigid Surface

1988 ◽  
Vol 110 (3) ◽  
pp. 477-485 ◽  
Author(s):  
K. Komvopoulos

Based on the finite element method, the elastic contact problem of a layered semi-infinite solid compressed by a rigid surface is solved numerically. The case of a surface layer stiffer than the substrate is considered, and general solutions for the subsurface stress and deformation fields are presented for relatively thin, intermediate, and thick layers. Additionally, the stresses in a compressed homogeneous half-space having the substrate properties have been obtained for comparison. The significance of the layer thickness relative to the size of the half-contact width, the friction coefficient at the contact zone, and the stiffness of the layer are critically examined and the conditions under which the layer is beneficial are addressed. Furthermore, the mechanisms of microcrack initiation at the layer surface or interface, layer debonding, and onset of plastic flow in the layered solid are explained qualitatively, in light of the governing stresses, and the regimes of their prevalence are approximately determined.

2019 ◽  
Vol 13 (3) ◽  
pp. 5242-5258
Author(s):  
R. Ravivarman ◽  
K. Palaniradja ◽  
R. Prabhu Sekar

As lined, higher transmission ratio drives system will have uneven stresses in the root region of the pinion and wheel. To enrich this agility of uneven stresses in normal-contact ratio (NCR) gearing system, an enhanced system is desirable to be industrialized. To attain this objective, it is proposed to put on the idea of modifying the correction factor in such a manner that the bending strength of the gearing system is improved. In this work, the correction factor is modified in such a way that the stress in the root region is equalized between the pinion and wheel. This equalization of stresses is carried out by providing a correction factor in three circumstances: in pinion; wheel and both the pinion and the wheel. Henceforth performances of this S+, S0 and S- drives are evaluated in finite element analysis (FEA) and compared for balanced root stresses in parallel shaft spur gearing systems. It is seen that the outcomes gained from the modified drive have enhanced performance than the standard drive.


1992 ◽  
Vol 20 (2) ◽  
pp. 83-105 ◽  
Author(s):  
J. P. Jeusette ◽  
M. Theves

Abstract During vehicle braking and cornering, the tire's footprint region may see high normal contact pressures and in-plane shear stresses. The corresponding resultant forces and moments are transferred to the wheel. The optimal design of the tire bead area and the wheel requires a detailed knowledge of the contact pressure and shear stress distributions at the tire/rim interface. In this study, the forces and moments obtained from the simulation of a vehicle in stationary braking/cornering conditions are applied to a quasi-static braking/cornering tire finite element model. Detailed contact pressure and shear stress distributions at the tire/rim interface are computed for heavy braking and cornering maneuvers.


1989 ◽  
Vol 111 (3) ◽  
pp. 430-439 ◽  
Author(s):  
K. Komvopoulos

The elastic-plastic contact problem of a layered half-space indented by a rigid surface is solved with the finite element method. The case of a layer stiffer and harder than the substrate is analyzed and solutions for the contact pressure, subsurface stresses and strains, and location, shape, and growth of the plastic zone are presented for various layer thicknesses and indentation depths. Finite element results for a halfspace having the substrate properties are also given for comparison purposes. Differences between the elastic and elastic-plastic solutions are discussed and the significance of critical parameters such as the layer thickness, mechanical properties of layer and substrate materials, indentation depth, and interfacial friction on the threshold of plasticity, contact pressure distribution, and growth of the plastic zone are examined. Additionally, the mechanisms of layer decohesion and subsurface crack initiation are interpreted in light of the results obtained in this study.


2014 ◽  
Vol 644-650 ◽  
pp. 455-458
Author(s):  
Yao Ye ◽  
Yong Hai Wu

Frame has important effects on the performance of the whole of heavy semi-trailer. A heavy semi-trailer frame is analyzed and researched on in the finite-element way in this article. The frame of 3D geometric model is established by using Pro/E. And it was imported into the Hypermesh to establish frame finite element model. Frame are calculated by using ANSYS solver in bending condition, emergency braking conditions and rapid turn conditions of stress and deformation conditions. The computational tools and methods we used provide the new type of frame and development with a reference method to refer to in this paper.


Author(s):  
Jiemin Liu ◽  
Guangtao Ma

A typical ground imitating tank is analyzed regarding it as the thin-walled structure composed of plates (skins) and beams (reinforcement) using finite element method (FEM). Through moving the location of reinforcements, make the skins close with the flanges of the reinforcements in order to imitate actually the connection of the skins and the reinforcements. The thickness of plates, the size and the geometry shape and the location of reinforcements are taken as parameters to be optimized. In calculation, not only consider effects of the oil-weight, the extra-pressure in tank and the dead weight of the tank on the stresses and displacements of the tank, but also analyze the effects of the inertia forces produced due to the rotation of the tank on the stresses and displacements. Displacement, stress and deformation distributions of the ground imitating tank under the three typical flying postures imitated are given.


2019 ◽  
Vol 799 ◽  
pp. 211-216
Author(s):  
Alina Sivitski ◽  
Priit Põdra

Contact modeling could be widely used for different machine elements normal contact pressure calculations and wear simulations. However, classical contact models as for example Hertz contact models have many assumptions (contact bodies are elastic, the contact between bodies is ellipse-shaped, contact is frictionless and non-conforming). In conditions, when analytical calculations cannot be performed and experimental research is economically inexpedient, numerical methods have been applied for solving such engineering tasks. Contact stiffness parameters appear to be one of the most influential factors during finite element modeling of contact. Contact stiffness factors are usually selected according to finite element analysis software recommendations. More precise analysis of contact stiffness parameters is often required for finite element modeling of contact.


2019 ◽  
Vol 11 (04) ◽  
pp. 1950039 ◽  
Author(s):  
Arash Valiollahi ◽  
Mohammad Shojaeifard ◽  
Mostafa Baghani

In this paper, coupled axial and torsional large deformation of an incompressible isotropic functionally graded nonlinearly elastic solid cylinder is investigated. Utilizing stretch-based constitutive models, where the deformation tensor is non-diagonal is complex. Hence, an analytical approach is presented for combined extension and torsion of functionally graded hyperelastic cylinder. Also, finite element analysis is carried out to verify the proposed analytical solutions. The Ogden model is employed to predict the mechanical behavior of hyperelastic materials whose material parameters are function of radius in an exponential fashion. Both finite element and analytical results are in good agreement and reveal that for positive values of exponential power in material variation function, stress decreases and the rate of stress variation intensifies near the outer surface. A transition point for the hoop stress is identified, where the distribution plots regardless of the value of stretch or twist, intersect and the hoop stress alters from compressive to tensile. For the Ogden model, the torsion induced force is always compressive which means the total axial force starts from being tensile and then eventually becomes compressive i.e., the cylinder always tends to elongate on twisting.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1401 ◽  
Author(s):  
Sorin Vlase ◽  
Adrian Eracle Nicolescu ◽  
Marin Marin

In classical mechanics, determining the governing equations of motion using finite element analysis (FEA) of an elastic multibody system (MBS) leads to a system of second order differential equations. To integrate this, it must be transformed into a system of first-order equations. However, this can also be achieved directly and naturally if Hamilton’s equations are used. The paper presents this useful alternative formalism used in conjunction with the finite element method for MBSs. The motion equations in the very general case of a three-dimensional motion of an elastic solid are obtained. To illustrate the method, two examples are presented. A comparison between the integration times in the two cases presents another possible advantage of applying this method.


Sign in / Sign up

Export Citation Format

Share Document