Stresses and Displacements in Vessels due to Loads Imposed by Single and Multiple Piping Attachments

1985 ◽  
Vol 107 (1) ◽  
pp. 51-59
Author(s):  
F. M. G. Wong ◽  
W. J. Craft ◽  
G. H. East

The Fourier solution for thin shell equations models pressure vessels as continuous simply connected surfaces with local loads. The technique allows placement of tractions with combinations of radial, shear, and axial components. Unlike Bijlaard, the solution in this paper includes loads placed at any position along the cylinder. Stiffness and the enhanced load-carrying capacity that internal pressure gives to thin vessels can be simulated. Numerical convergence problems are reduced by an improved displacement-load algorithm, and by use of load sites that allow the circular functions to be compactly grouped. A variety of loading distributions may be analyzed including large and small nozzles near and away from centerlines. Both rectangular and circular attachments are simulated. Through superposition, multiple attachments with their own loads may be examined. The attachments to the vessel may be either rigid or soft. A comparison to analytical results from Bijlaard shows excellent agreement. Comparisons with experimental tests on an API-650 nozzle on a storage tank are in good agreement. Variations between experimental and calculated results are primarily caused by assuming a simply supported base in the calculation, whereas in the experimental test, the base is more nearly fixed.

2021 ◽  
Vol 13 (13) ◽  
pp. 7174
Author(s):  
Massimo Rundo ◽  
Paolo Casoli ◽  
Antonio Lettini

In hydraulic components, nonlinearities are responsible for critical behaviors that make it difficult to realize a reliable mathematical model for numerical simulation. With particular reference to hydraulic spool valves, the viscous friction coefficient between the sliding and the fixed body is an unknown parameter that is normally set a posteriori in order to obtain a good agreement with the experimental data. In this paper, two different methodologies to characterize experimentally the viscous friction coefficient in a hydraulic component with spool are presented. The two approaches are significantly different and are both based on experimental tests; they were developed in two distinct laboratories in different periods of time and applied to the same flow compensator of a pump displacement control. One of the procedures was carried out at the Fluid Power Research Laboratory of the Politecnico di Torino, while the other approach was developed at the University of Parma. Both the proposed methods reached similar outcomes; moreover, neither method requires the installation of a spool displacement transducer that can significantly affect the results.


2002 ◽  
Vol 470 ◽  
pp. 319-357 ◽  
Author(s):  
ODD M. FALTINSEN ◽  
ALEXANDER N. TIMOKHA

The modal system describing nonlinear sloshing with inviscid flows in a rectangular rigid tank is revised to match both shallow fluid and secondary (internal) resonance asymptotics. The main goal is to examine nonlinear resonant waves for intermediate depth/breadth ratio 0.1 [lsim ] h/l [lsim ] 0.24 forced by surge/pitch excitation with frequency in the vicinity of the lowest natural frequency. The revised modal equations take full account of nonlinearities up to fourth-order polynomial terms in generalized coordinates and h/l and may be treated as a modal Boussinesq-type theory. The system is truncated with a high number of modes and shows good agreement with experimental data by Rognebakke (1998) for transient motions, where previous finite depth modal theories failed. However, difficulties may occur when experiments show significant energy dissipation associated with run-up at the walls and wave breaking. After reviewing published results on damping rates for lower and higher modes, the linear damping terms due to the linear laminar boundary layer near the tank's surface and viscosity in the fluid bulk are incorporated. This improves the simulation of transient motions. The steady-state response agrees well with experiments by Chester & Bones (1968) for shallow water, and Abramson et al. (1974), Olsen & Johnsen (1975) for intermediate fluid depths. When h/l [lsim ] 0.05, convergence problems associated with increasing the dimension of the modal system are reported.


Author(s):  
Eduard Egusquiza ◽  
Carme Valero ◽  
Quanwei Liang ◽  
Miguel Coussirat ◽  
Ulrich Seidel

In this paper, the reduction in the natural frequencies of a pump-turbine impeller prototype when submerged in water has been investigated. The impeller, with a diameter of 2.870m belongs to a pump-turbine unit with a power of around 100MW. To analyze the influence of the added mass, both experimental tests and numerical simulations have been carried out. The experiment has been performed in air and in water. From the frequency response functions the modal characteristics such as natural frequencies and mode shapes have been obtained. A numerical simulation using FEM (Finite Elements Model) was done using the same boundary conditions as in the experiment (impeller in air and surrounded by a mass of water). The modal behaviour has also been calculated. The numerical results were compared with the available experimental results. The comparison shows a good agreement in the natural frequency values both in air and in water. The reduction in frequency due to the added mass effect of surrounding fluid has been calculated. The physics of this phenomenon due to the fluid structure interaction has been investigated from the analysis of the mode-shapes.


Author(s):  
Atsushi Yamaguchi

Boilers and pressure vessels are heavily used in numerous industrial plants, and damaged equipment in the plants is often detected by visual inspection or non-destructive inspection techniques. The most common type of damage is wall thinning due to corrosion under insulation (CUI) or flow-accelerated corrosion (FAC), or both. Any damaged equipment must be repaired or replaced as necessary as soon as possible after damage has been detected. Moreover, optimization of the time required to replace damaged equipment by evaluating the load carrying capacity of boilers and pressure vessels with wall thinning is expected by engineers in the chemical industrial field. In the present study, finite element analysis (FEA) is used to evaluate the load carrying capacity in T-joints with wall thinning. Burst pressure is a measure of the load carrying capacity in T-joints with wall thinning. The T-joints subjected to burst testing are carbon steel tubes for pressure service STPG370 (JIS G3454). The burst pressure is investigated by comparing the results of burst testing with the results of FEA. Moreover, the maximum allowable working pressure (MAWP) of T-joints with wall thinning is calculated, and the safety margin for the burst pressure is investigated. The burst pressure in T-joints with wall thinning can be estimated the safety side using FEA regardless of whether the model is a shell model or a solid model. The MAWP is 2.6 MPa and has a safety margin 7.5 for burst pressure. Moreover, the MAWP is assessed the as a safety side, although the evaluation is too conservative for the burst pressure.


2021 ◽  
pp. 136943322110015
Author(s):  
Yinqi Li ◽  
Feng Liu ◽  
Wenming Cheng ◽  
Huasen Liu

Latticed built-up columns are applied more extensively than solid columns in structural engineering because of their excellent load-carrying capacity and light weight. Studies on the bearing capacity of latticed columns, particularly multiple-legged latticed columns, need to be conducted in detail. In this investigation, seven four-legged latticed column specimens of different bar sections, bar distributions and loading eccentricities under compressive loads were subjected to experimental tests. The initial geometric imperfections of the legs and bars were measured and introduced into the FE numerical method. The experimental results were then compared with those of Geometrical and Material Non-Linear Analysis with Imperfection in ABAQUS software. The combined data indicate that the bar section, bar distribution and loading eccentricity significantly influenced the ultimate strength of four-legged latticed columns, producing maximum variations of 105.67%, 65.7% and 48.48%, respectively. This investigation demonstrates the influence of lacing bars and improves the results obtained from FE numerical analytical techniques.


2018 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
F. MUHAMMAD ZAIN ◽  
M. GARDA KHADAFI ◽  
P. H. GUNAWAN

The diffusion equation or known as heat equation is a parabolic and linear type of partial differential equation. One of the numerical method to approximate the solution of diffusion equations is Finite Difference Method (FDM). In this study, the analysis of numerical convergence of FDM to the solution of diffusion equation is discussed. The analytical solution of diffusion equation is given by the separation of variables approach. Here, the result show the convergence of rate the numerical method is approximately approach 2. This result is in a good agreement with the spatial error from Taylor expansion of spatial second derivative.


Author(s):  
Ping Chen ◽  
Yuting Deng

This paper describes a new structural type of end closure with use of the metallic self-energized n-ring as its sealing gasket and the D-section shearing bolts as its load-carrying connection between the head and the top flange. The connection installs easily and quickly for pressure vessels. The strength analyses of connection component are presented.


2020 ◽  
Vol 327 ◽  
pp. 03004
Author(s):  
D. Santana Sanchez ◽  
A. Mostafa

The present paper discusses the design analysis and limitations of the steering system of a buggy. Many geometrical and performance characteristics of the designed steering system were considered to address the kinematic constraints and load carrying capacity of the steering elements. Ackremann geometry approach was used to assess the limiting steering angle, while Lewis bending formula with the inclusion of dynamic effects was employed to characterise the flexural properties of the rack and pinion steering system. Analytical results were numerically verified using ABAQUS/Explicit nonlinear finite element (FE) package. Good agreement has been achieved between analytical and numerical results in predicting the flexural behaviour of the steering rack and pinion system.


With the aim of saving energy and to reduce global warming effect, our work focuses on the valorization of the waste heat evacuated by the condenser of a refrigeration machine (air-conditioner) for the desalination of sea water. In this paper, the conception of a new system combining airconditioning and desalination is realized. The modelling of the heat exchanges of each part of the system is realized. To improve the performance of the system, various experimental tests are represented and discussed. Comparison between simulation and experimental results shows a good agreement and present a courageous motive for the system application.


Sign in / Sign up

Export Citation Format

Share Document