Toward a More Exact Kinematics of Roller Chain Drives

1988 ◽  
Vol 110 (3) ◽  
pp. 269-275 ◽  
Author(s):  
C.-K. Chen ◽  
F. Freudenstein

A kinematic analysis has been developed for the motion of roller chain drives, which is exact for relatively slow-speed chain drives with negligible wear. The results shed new light on chordal or polygonal action, and the associated impact velocity and motion fluctuation of the chain drive. The results have also revealed the existence of a remarkable degree of sensitivity of chain performance with respect to center distance including discontinuities in the motion derivatives. This in turn provides a new opportunity for the optimization of chain drives by optimizing center distance both in the design stage, as well as during installation and maintenance.

2012 ◽  
Vol 155-156 ◽  
pp. 535-539 ◽  
Author(s):  
Li Xin Xu ◽  
Yong Gang Li

A detailed numerical simulation analysis on the dynamic response of intermittent roller chain drive has been carried out in this study. Instead of using analytical method, three dimension solid modeling software and multi-rigid body dynamic analysis software are utilized for modeling and simulating the dynamic behavior of chain drive. The longitudinal vibration response of the chain links is concentrated on, which aims to reveal the dynamic characteristics of the intermittent chain drive under varying motion laws such as the modified sinusoid (MS), the modified constant velocity (MCV) and the unsymmetrical modified trapezoid (UMT). The simulation results can enable designers to require information on the analysis and design of mechanisms with the intermittent roller chain drives.


Author(s):  
James C. Conwell ◽  
Glen E. Johnson ◽  
S. W. Peterson

Abstract In this article, a brief history of chain drives is presented, and the design and construction of a machine to investigate chain drive force phenomena is discussed. The new test machine allows the measurement of the impact force between a roller and the sprocket during “seating” and it can also be used to measure the forces that exist in the link sides plates during normal operation (including start-up and shut down conditions). Data can be obtained for a wide range of chain loads and speeds. Two companion papers (“Experimental Investigation of the Impact Force that Occurs When a Roller Seats on the Sprocket During Normal Operation of a Roller Chain Drive” and “Experimental Investigation of the Forces in a Link Side Plate During Normal Operation of a Roller Chain Drive”, both presented at this conference) describe experiments that have been completed with this test machine.


1996 ◽  
Vol 118 (4) ◽  
pp. 538-543 ◽  
Author(s):  
Liexiao Kong ◽  
M. Sabbaghian

On a roller chain drive, if the incoming engaging roller moves tangent to the pitch circle at the moment of engagement, no roller-sprocket impact should occur. Based on such a notion, an engagement guiding mechanism is proposed to make this possible. The algorithm of kinematic design of the mechanism is presented. Comparisons between the new model and a conventional model show significant improvements made in the kinematic properties of the engaging roller.


1977 ◽  
Vol 191 (1) ◽  
pp. 363-370 ◽  
Author(s):  
S. W. Nicol ◽  
J. N. Fawcett

Particularly at the higher sprocket speeds, one of the main sources of noise and high-frequency vibration in a roller chain drive is the impact which occurs each time the driving sprocket collects a roller from the chain span. A method of guiding the chain so as to virtually eliminate these impacts is described. Details are given of experimental tests in which a simply-constructed guide device greatly reduced the amplitude of the high-frequency vibration of a drive, and produced a very significant lowering of the noise level.


Author(s):  
Nicholas M. Veikos ◽  
Ferdinand Freudenstein

Abstract Part I of this paper (5) summarized the previous work and has described the theoretical and computational aspects of a computer-aided procedure which has been developed by the authors for the dynamic analysis of roller chain drives. Lagrange’s equations of motion have been derived by assuming the roller chain to behave as a series of masses lumped at the roller centers and connected by bars of constant axial stiffness. The equations of motion are solved in the time domain until steady state conditions are achieved.


Sign in / Sign up

Export Citation Format

Share Document