Reduction of Noise and Vibration in Roller Chain Drives

1977 ◽  
Vol 191 (1) ◽  
pp. 363-370 ◽  
Author(s):  
S. W. Nicol ◽  
J. N. Fawcett

Particularly at the higher sprocket speeds, one of the main sources of noise and high-frequency vibration in a roller chain drive is the impact which occurs each time the driving sprocket collects a roller from the chain span. A method of guiding the chain so as to virtually eliminate these impacts is described. Details are given of experimental tests in which a simply-constructed guide device greatly reduced the amplitude of the high-frequency vibration of a drive, and produced a very significant lowering of the noise level.

Author(s):  
James C. Conwell ◽  
Glen E. Johnson ◽  
S. W. Peterson

Abstract In this article, a brief history of chain drives is presented, and the design and construction of a machine to investigate chain drive force phenomena is discussed. The new test machine allows the measurement of the impact force between a roller and the sprocket during “seating” and it can also be used to measure the forces that exist in the link sides plates during normal operation (including start-up and shut down conditions). Data can be obtained for a wide range of chain loads and speeds. Two companion papers (“Experimental Investigation of the Impact Force that Occurs When a Roller Seats on the Sprocket During Normal Operation of a Roller Chain Drive” and “Experimental Investigation of the Forces in a Link Side Plate During Normal Operation of a Roller Chain Drive”, both presented at this conference) describe experiments that have been completed with this test machine.


2012 ◽  
Vol 155-156 ◽  
pp. 535-539 ◽  
Author(s):  
Li Xin Xu ◽  
Yong Gang Li

A detailed numerical simulation analysis on the dynamic response of intermittent roller chain drive has been carried out in this study. Instead of using analytical method, three dimension solid modeling software and multi-rigid body dynamic analysis software are utilized for modeling and simulating the dynamic behavior of chain drive. The longitudinal vibration response of the chain links is concentrated on, which aims to reveal the dynamic characteristics of the intermittent chain drive under varying motion laws such as the modified sinusoid (MS), the modified constant velocity (MCV) and the unsymmetrical modified trapezoid (UMT). The simulation results can enable designers to require information on the analysis and design of mechanisms with the intermittent roller chain drives.


2012 ◽  
Vol 190-191 ◽  
pp. 23-27
Author(s):  
Jin Sha ◽  
Zhi Yuan Yao ◽  
Yang Jiao

This paper proposes an ultrasonic knife system for MEMS packaging. The ultrasonic knife system is consisted of an ultrasonic transducer, a cutter and a gripper feeder. The ultrasonic transducer engenders high frequency vibration, which lead to the resonance of the structure. Amplitude transformer can magnify the amplitude. By the impact and collision of the cutter, the material can be cut through, and the high temperature created by high-frequency vibration can do the welding. The structure is designed and optimized by the finite element method, and a model machine is produced. According to the experimental results, the ultrasonic knife system has the virtues of high cutting force and better wedding feature, which are suitable for MEMS packaging.


1988 ◽  
Vol 110 (3) ◽  
pp. 269-275 ◽  
Author(s):  
C.-K. Chen ◽  
F. Freudenstein

A kinematic analysis has been developed for the motion of roller chain drives, which is exact for relatively slow-speed chain drives with negligible wear. The results shed new light on chordal or polygonal action, and the associated impact velocity and motion fluctuation of the chain drive. The results have also revealed the existence of a remarkable degree of sensitivity of chain performance with respect to center distance including discontinuities in the motion derivatives. This in turn provides a new opportunity for the optimization of chain drives by optimizing center distance both in the design stage, as well as during installation and maintenance.


Author(s):  
Peter Fritz ◽  
Friedrich Pfeiffer

Abstract This paper deals with roller chain drives applied in combustion engines. In order to find characteristics for an optimal design, all components of a chain drive are taken into account. For a detailed analysis of the chain strand vibrations and the contact configurations each chain link, sprocket and guide is treated as a separate body. A nonlinear force element describes the joint forces, including elasticity, damping, backlash and oil-displacement. To determine real contact forces between a link and a sprocket or a guide, the exact contour and the mutual dependence of the contacts are considered. The impact of one link may influence the other links in such a manner that their contact configuration may change. In the mechanical model these contacts are represented by unilateral constraints. Applying the formulation of the linear complementarities including additional inequality conditions, the determination of a valid contact configuration after a change in the system structure is simplified.


2018 ◽  
Vol 18 (08) ◽  
pp. 1840032
Author(s):  
ZHONG YUN ◽  
CHUANG XIANG ◽  
LIANG WANG

The vibrations in blood pumps were often caused by high speed, suspension structure, viscoelastic implantation environment and other factors in practical application. Red blood cell (RBC) was modeled using a nonlinear spring network model. The immersed boundary-lattice Boltzmann method (IB-LBM) was used to investigate the impact of high-frequency vibration boundary on RBC. To confirm the RBC model, the simulation results of RBC stretching were compared with experimental results. We examined the force acting on RBC membrane nodes; moreover, we determined whether RBC energy was affected by different frequencies, amplitudes, and vibration models of the boundary. Furthermore, we examined whether RBC energy was affected by the distance between the top and bottom boundaries. The energy of RBCs in shear flow disturbed by the vibration boundary was also investigated. The results indicate that larger amplitude (Am), frequency (Fr), and opposite vibration velocity of top and bottom boundary produced a larger force that acted on RBC membrane nodes and larger energy changes in RBCs. The vibration boundary may cause turbulence and alter RBC energy. When the blood pump was designed and optimized, the vibration frequency and amplitude of the blood pump body and impeller should be reduced, the phase of the blood pump body and impeller vibration velocity should be close. To alleviate the free energy of RBCs and to reduce RBC injury in the blood pump, the distance between RBCs and the boundary should not be less than 20[Formula: see text][Formula: see text]m.


2012 ◽  
Vol 522 ◽  
pp. 598-601
Author(s):  
Wei Sun ◽  
Xiao Lun Liu ◽  
Wen Cheng Wang ◽  
Li Yan He ◽  
Jia Jun Liu

In order to mitigate the impact and the polygon effect of the chain and the sprocket during the meshing process and achieve the purpose of noise reduction, a Hlow noiseH nanostructured metal mesh-polyurethane composite material split roller chain was designed by means of changing structure and material of chain roller. Noise testing and frequency spectrum analysis were conducted, for the new roller chain and the other three kinds of the same specification chains with different structural rollers, on the closed force flow noise test bench researched and developed independently. The results show that the new roller chain can absorb some of the impact energy, and reduce vibration and noise of chain drive. The noise level generated by the new roller chain is significantly lower than the other tested roller chains, especially in high frequency and high speed. The difference in noise level is actually 3-11dB in driving sprocket speed of 1000r/min, and a significant noise reduction is achieved. The results also verify low noise characteristics of the new roller chain and rationality of design method.


1977 ◽  
Vol 191 (1) ◽  
pp. 271-275 ◽  
Author(s):  
J. N. Fawcett ◽  
S. W. Nicol

In a roller chain drive an impulsive load occurs each time a roller is picked up by the driving sprocket from the chain span. These impulsive loads cause high frequency sprocket angular accelerations of large amplitude, and are the source of high frequency chain noise. Measurements of sprocket acceleration immediately after impact have been made to demonstrate the effects of different methods of lubrication on the magnitude of the impulse. Oil drip, oil jet and oil bath lubrication have been investigated for normal machine oil and very high viscosity oil. The results show considerable variations in acceleration amplitude.


1992 ◽  
Vol 114 (3) ◽  
pp. 397-403 ◽  
Author(s):  
K. W. Wang ◽  
S. P. Liu ◽  
S. I. Hayek ◽  
F. H. K. Chen

Experimental observation has shown that the most significant noise source in roller chain drives is from the impacts between the chain and the sprocket during their meshing process. Despite its importance, studies have not been made to thoroughly analyze the chain/sprocket impact dynamics and their interaction with the vibrating, axially moving chain structure. This paper presents a novel analysis which integrates the local meshing phenomena with the global system. An axially moving chain interacting with local impacts has been modelled and the momentum balance method is employed to derive the impulse function. A study is carried out to quantify the intensity of subsequent impacts. It is found that the impact intensity is significantly affected by the vibration characteristics and response of the moving chain, and vice versa. The classical quasi-static approach will create errors in predicting the impulse magnitude and system response. Meshing frequencies that will cause maximum and minimum impulses are analytically predicted. This fundamental investigation provides new insight into roller chain dynamics, which is an essential step toward the design of quiet chain drives.


Author(s):  
О.B. Skvortsov

The paper considers influence of the inertial properties of structural materials on mechanical stresses under high-frequency vibrations. The necessity of considering acceleration estimates when creating vibration monitoring systems focused on the incorporating cyclic strength is proved. The importance of the effects of high-frequency vibration in the local areas of the structural material is noted, taking into account the formation of latent defects and reducing the fatigue limit during gigacycle fatigue. Recommendations are given concerning supplement to the vibration monitoring system, taking into account the decrease in strength under high-frequency vibration when solving problems of diagnostics, forecasting and protection with new innovative solutions. It provides increased reliability of the diagnosis and protection of equipment. In addition to evaluating the current state of the unit based on the results of vibration intensity measuring, the proposed solutions allow additional assessing the degree of wear and taking into account the impact of fatigue processes in the operation of a multi-level automatic protection system of the equipment.


Sign in / Sign up

Export Citation Format

Share Document