The Stability of Simply Supported Rectangular Surfaces in Uniform Subsonic Flow

1973 ◽  
Vol 40 (1) ◽  
pp. 68-72 ◽  
Author(s):  
C. H. Ellen

A study is made of the stability of a simply supported flat plate set in an infinite rigid baffle when an inviscid fluid flows uniformly at subsonic speed past one side of the surface. The generalized pressures are derived for low frequencies with two and three-dimensional flows. The three-dimensional generalized pressures are expanded asymptotically for high and low aspect ratios, and analytic forms derived for the critical flow velocity at instability. The asymptotic expansions enable the effect of aspect ratio on stability to be determined. It is shown that the incompressible limit, for two-dimensional flows, is singular but the stability criterion is associated with first-mode divergence and is identical with the three-dimensional high aspect ratio stability result, although there are certain detailed differences in the nature of the instability.

2003 ◽  
Vol 13 (10) ◽  
pp. 1413-1436 ◽  
Author(s):  
D. Schötzau ◽  
C. Schwab ◽  
A. Toselli

We consider stabilized mixed hp-discontinuous Galerkin methods for the discretization of the Stokes problem in three-dimensional polyhedral domains. The methods are stabilized with a term penalizing the pressure jumps. For this approach it is shown that ℚk-ℚk and ℚk-ℚk-1 elements satisfy a generalized inf–sup condition on geometric edge and boundary layer meshes that are refined anisotropically and non quasi-uniformly towards faces, edges, and corners. The discrete inf–sup constant is proven to be independent of the aspect ratios of the anisotropic elements and to decrease as k-1/2 with the approximation order. We also show that the generalized inf–sup condition leads to a global stability result in a suitable energy norm.


2000 ◽  
Author(s):  
Bok-Cheol Sim ◽  
Abdelfattah Zebib

Abstract Three-dimensional, time-dependent thermocapillary convection in open cylindrical containers is investigated numerically. Results for aspect ratios (Ar) of 1, 2.5, 8, and 16 and a Prandtl number of 6.84 are obtained to compare the results of numerical simulations with ongoing experiments. Convection is steady and axisymmetric at sufficiently low values of the Reynolds number (Re). Transition to oscillatory states occurs at critical values of Re which depend on Ar. With Ar = 1.0 and 2.5, we observe, respectively, 5 and 9 azimuthal wavetrains travelling clockwise at the free surface near the critical Re. With Ar = 8.0 and 16.0, there are substantially more, but pulsating waves near the critical Re. In the case of Ar = 16.0, which approaches the conditions in an infinite layer, our results are in good agreement with linear theory. While the critical Reynolds number decreases with increasing aspect ratio in the case of azimuthal rotating waves, it increases with increasing aspect ratio in the case of azimuthal pulsating waves. The critical frequency of temperature oscillations is found to decrease linearly with increasing Ar. We have also computed supercritical time-dependent states and find that while the frequency increases with increasing Re near the critical region, the frequency of supercritical convection decreases with Re.


1995 ◽  
Vol 117 (1) ◽  
pp. 17-23 ◽  
Author(s):  
G. Papadopoulos ◽  
M. V. O¨tu¨gen

The incompressible turbulent flow over a backward-facing step in a rectangular duct was investigated experimentally. The side wall effects on the core flow were determined by varying the aspect ratio (defined as the step span-to-height ratio) from 1 to 28. The Reynolds number, based on the step height and the oncoming free-stream velocity, was 26,500. Detailed velocity measurements were made, including the turbulent stresses, in a region which extended past the flow reattachment zone. Wall static pressure was also measured on both the step and flat walls. In addition, surface visualizations were obtained on all four walls surrounding the separated flow to supplement near-wall velocity measurements. The results show that the aspect ratio has an influence on both the velocity and wall pressure even for relatively large aspect ratios. For example, in the redevelopment region downstream of reattachment, the recovery pressure decreases with smaller aspect ratios. The three-dimensional side wall effects tend to slow down the relaxation downstream of reattachment for smaller aspect ratios as evidenced by the evolution of the velocity field. For the two smallest aspect ratios investigated, higher centerplane streamwise and transverse velocities were obtained which indicate a three-dimensional mean flow structure along the full span of the duct.


Author(s):  
Joseph W. Hall ◽  
Daniel Ewing

The development of the large-scale structures in three-dimensional wall jets exiting rectangular nozzles with aspect-ratios of 1 and 4 was investigated using simultaneous measurements of the fluctuating wall pressure across the jet. The pressure fluctuations in the jets were asymmetric and caused the fluctuating wall pressure to be poorly correlated across the jet centerline. A Proper Orthogonal Decomposition analysis indicated that both the first and second modes make similar contributions to the variance of the fluctuating pressure, and were symmetric and antisymmetric, respectively, and the interplay between these modes caused the asymmetry in the instantaneous pressure fluctuations across the jet centreline. A wavelet analysis of the instantaneously reconstructed pressure fields indicated that the fluctuations were predominantly in two frequency bands near the jet centerline, but were only contained in one band on the outer lateral edges of the jet, indicating there were two different large-scale motions present. The development of large-scale structures in the two jets initially differed in the intermediate field with the antisymmetric mode being more prominent in the square jet and the symmetric mode being more prominent in the larger aspect-ratio jet. Further downstream, the symmetric mode was more prominent in both jets.


Author(s):  
Ki-Wahn Ryu ◽  
Hyung-Jin Kim ◽  
Chi-Yong Park

Fluid-elastic instability and turbulence excitation for an under developing steam generator are investigated numerically. The stability ratio and the amplitude of turbulence excitation are obtained by using the PIAT (Program for Integrity Assessment of Steam Generator Tube) code from the information on the thermal-hydraulic data of the steam generator. The aspect ratio, the ratio between the height of U-tube from the upper most tube support plate (h) and the width of two vertical portion of U-tube (w), is defined for geometric parameter study. Several aspect ratios with relocation of tube support plates are adopted to study the effects on the mode shapes and characteristics of flow-induced vibration. When the aspect ratio exceeds value of 1, most of the mode shapes at low frequency are generated at the top of U-tube. It makes very high value of the stability ratio and the amplitude of turbulent excitation as well. We can consider that the local mode shape at the upper side of U-tube will develop the wear phenomena between the tube and the anti-vibration bars such as vertical, horizontal, and diagonal strips. It turns out that the aspect ratio reveals very important parameter for the design stage of the steam generator. The appropriate value of the aspect ratio should be specified and applied.


2014 ◽  
Vol 763 ◽  
pp. 302-321 ◽  
Author(s):  
Justin S. Leontini ◽  
David Lo Jacono ◽  
Mark C. Thompson

AbstractThis paper presents the results of numerical stability analysis of the wake of an elliptical cylinder. Aspect ratios where the ellipse is longer in the streamwise direction than in the transverse direction are considered. The focus is on the dependence on the aspect ratio of the ellipse of the various bifurcations to three-dimensional flow from the two-dimensional Kármán vortex street. It is shown that the three modes present in the wake of a circular cylinder (modes A, B and QP) are present in the ellipse wake, and that in general they are all stabilized by increasing the aspect ratio of the ellipse. Two new pertinent modes are found: one long-wavelength mode with similarities to mode A, and a second that is only unstable for aspect ratios greater than approximately 1.75, which has similar spatiotemporal symmetries to mode B but has a distinct spatial structure. Results from fully three-dimensional simulations are also presented confirming the existence and growth of these two new modes in the saturated wakes.


1976 ◽  
Vol 43 (3) ◽  
pp. 455-458 ◽  
Author(s):  
Kenzo Sato

On the basis of the ordinary thin plate theory, the stability of a simply supported elliptical plate subjected to uniform compression in its middle plane is considered by the use of circular functions, hyperbolic functions, Mathieu functions, and modified Mathieu functions which are solutions of the equilibrium equation of the buckled plate. The first five eigenvalues for the buckling mode symmetrical about both axes are calculated numerically for a variety of aspect ratios of the ellipse. The limiting cases of a circular plate and of an infinitely long strip are also discussed.


2014 ◽  
Vol 986-987 ◽  
pp. 882-886
Author(s):  
Hong Yu Qi ◽  
Peng Chao Guo

External surface cracks can occur in cylindrical vessels due to damage and propagate in the manufacturing process and during service life. Most of research focuses on stress intensity factors for surface cracks with low aspect ratios, i.e., a/c ≤1.0. Situation may well arise where the aspect ratio of cracks is larger than one. An external longitudinal surface crack is assumed to be subjected to different types of hoop stress distributions acting perpendicular to the crack faces. The stress intensity factors (SIFs) along the crack front were determined through the three-dimensional finite element method. Then these results are used to compute approximate values of SIFs in the case of complex loadings by employing both the superposition principle and the power series expansions of the actual hoop stresses. It is found that the maximum stress intensity factor for external surface cracks with high aspect ratio occurs at different point to that with low aspect ratio.


2014 ◽  
Vol 58 (01) ◽  
pp. 1-19
Author(s):  
Michael J. Hughes ◽  
Young T. Shen

The behavior of the force on a rudder changes significantly after the inception of stall, requiring different mathematical formulae to compute rudder forces prior-and poststall. Determining the inception angle at which stall occurs is important for predicting the rudder force on a maneuvering ship. A method to compute the inception angle of stall on a rudder is presented in this article. The theoretical formulation is based on a flow similarity approach, which relates three-dimensional rudder stall inception with two-dimensional airfoil data. Rudders are low-aspect ratio wings, and the three-dimensional lift is based on the low-aspect ratio wing theory. The two-dimensional airfoil stall data are obtained from National Advisory Committee for Aeronautics (NACA) reports. The derived theory is first validated with wind tunnel data from foils with a NACA 0015 profile of aspect ratios 1, 2, and 3. The theory is also validated with data from foils with a NACA 0012 profile and an aspect ratio of 2, 3, and 6.


1988 ◽  
Vol 187 ◽  
pp. 329-352 ◽  
Author(s):  
J. W. Jacobs ◽  
I. Catton

Three-dimensional weakly nonlinear Rayleigh-Taylor instability is analysed. The stability of a confined inviscid liquid and an overlying gas with density much less than that of the liquid is considered. An asymptotic solution for containers of arbitrary cross-sectional geometry, valid up to order ε3 (where ε is the root-mean-squared initial surface slope) is obtained. The solution is evaluated for the rectangular and circular geometries and for various initial modes (square, hexagonal, axisymmetric, etc.). It is found that the hexagonal and axisymmetric instabilities grow faster than any other shapes in their respective geometries. In addition it is found that, sufficiently below the cutoff wavenumber, instabilities that are equally proportioned in the lateral directions grow faster than those with longer, thinner shape. However, near the cutoff wavenumber this trend reverses with instabilities having zero aspect ratio growing faster than those with aspect ratio near 1.


Sign in / Sign up

Export Citation Format

Share Document