Nonuniform Magnetic Field Effects in MHD Slider Bearing

1972 ◽  
Vol 94 (1) ◽  
pp. 101-105 ◽  
Author(s):  
M. I. Anwar ◽  
C. M. Rodkiewicz

A theoretical analysis is made of a slider bearing using an electrically conducting lubricant in the presence of a nonuniform magnetic field applied perpendicularly to the bearing surfaces. In the differential equations inertia terms are retained and the solution is obtained numerically for low Hartmann numbers. The results indicate that the contribution of inertia terms decreases with the increase of Hartmann number and that the nonuniform magnetic field gives higher load capacity than the comparable uniform magnetic field.

Author(s):  
TVVLN Rao ◽  
Ahmad Majdi Abdul Rani ◽  
Norani Muti Mohamed ◽  
Hamdan Haji Ya ◽  
Mokhtar Awang ◽  
...  

A model of magnetohydrodynamic partial slip laser texture bearing (slider and journal) is developed. The influence of laser bump texture and slip laser texture partial configuration on the magnetohydrodynamic performance analysis of bearing is presented. An electrically conducting fluid is confined to bearing surfaces under uniform magnetic field perpendicular to slider bearing and inclined to the line of maximum film thickness to journal bearing. A one-dimensional analysis based on the narrow groove theory is considered to evaluate the nondimensional pressure distribution in bearing. Results of the nondimensional load capacity and coefficient of friction of magnetohydrodynamic partial laser bump texture and partial slip laser texture bearing configurations are analyzed. Partial slip configuration under MHD lubrication without laser bump texture brings in the performance improvement.


1967 ◽  
Vol 89 (3) ◽  
pp. 323-328 ◽  
Author(s):  
J. Prakash

A theoretical analysis is made of a composite slider bearing using an electrically conducting lubricant such as a liquid metal in the presence of a magnetic field applied perpendicular to the bearing surfaces. Two solutions are presented for large and small values of Hartmann number. It is found that for large Hartmann number significant increase in load capacity can be obtained even under open circuit condition. Short circuit condition results in zero load capacity, under the approximation considered. At small Hartmann number only a slight increase occurs under open circuit condition and external power must be supplied to get a significant increase. It is seen that a magnetohydrodynamic composite bearing does not always give an increase in load capacity as compared to an equivalent inclined slider bearing, as is the case with classical composite bearing. There is a critical Hartmann number depending on the parameters of the problem, above which MHD effects reduce the load capacity as compared to the case of an equivalent inclined slider bearing. It is also observed that the frictional drag on the bearing can be made zero by supplying electrical energy through the electrodes to the fluid.


1962 ◽  
Vol 84 (1) ◽  
pp. 197-202 ◽  
Author(s):  
William T. Snyder

An analysis is presented of the slider bearing using an electrically conducting lubricant, such as a liquid metal, in the presence of a magnetic field. The solution permits the calculation of the load-carrying capacity of the bearing. A comparison is made with the classical slider bearing solution. It is shown that the load capacity of the bearing depends on the electromagnetic boundary conditions entering through the conductivity of the bearing surfaces. Numerical data are presented for nonconducting surfaces with the emphasis on a comparison between the classical bearing and the magnetohydrodynamic bearing characteristics. It is shown that a significant increase in load capacity is possible with liquid metal lubricants in the presence of a magnetic field.


2014 ◽  
Vol 18 (3) ◽  
pp. 1019-1028 ◽  
Author(s):  
Dragisa Nikodijevic ◽  
Zivojin Stamenkovic ◽  
Milos Jovanovic ◽  
Milos Kocic ◽  
Jelena Nikodijevic

The magnetohydrodynamic flow of three immiscible fluids in a horizontal channel with isothermal walls in the presence of an applied magnetic field has been investigated. All three fluids are electrically conducting, while the channel plates are electrically insulated. The general equations that describe the discussed problem under the adopted assumptions are reduced to ordinary differential equations and closed-form solutions are obtained in three fluid regions of the channel. Separate solutions with appropriate boundary conditions for each fluid have been obtained and these solutions have been matched at the interface using suitable boundary conditions. The analytical results for various values of the Hartmann number, the ratio of fluid heights and thermal conductivities have been presented graphically to show their effect on the flow and heat transfer characteristics.


2012 ◽  
Vol 16 (suppl. 2) ◽  
pp. 323-336 ◽  
Author(s):  
Zivojin Stamenkovic ◽  
Dragisa Nikodijevic ◽  
Milos Kocic ◽  
Jelena Nikodijevic

The paper investigates the magnetohydrodynamic flow of two immiscible, electrically conducting fluids between isothermal and insulated moving plates in the presence of an applied electric and inclined magnetic field with the effects of induced magnetic field. Partial differential equations governing the flow and heat transfer and magnetic field conservation are transformed to ordinary differential equations and solved exactly in both fluid regions, under physically appropriate boundary and interface conditions. Closed-form expressions are obtained for the non-dimensional velocity, non-dimensional induced magnetic field and nondimensional temperature. The analytical results for various values of the Hartmann number, the angle of magnetic field inclination, loading parameter and the ratio of plates? velocities are presented graphically to show their effect on the flow and heat transfer characteristics.


1966 ◽  
Vol 62 (3) ◽  
pp. 541-545 ◽  
Author(s):  
C. M. Purushothama

AbstractIt has been shown that uncoupled surface waves of SH type can be propagated without any dispersion in an electrically conducting semi-infinite elastic medium provided a uniform magnetic field acts non-aligned to the direction of wave propagation. In general, the velocity of propagation will be slightly greater than that of plane shear waves in the medium.


1962 ◽  
Vol 13 (1) ◽  
pp. 21-32 ◽  
Author(s):  
W. F. Hughes ◽  
R. A. Elco

The motion of an electrically conducting, incompressible, viscous fluid in the presence of a magnetic field is analyzed for flow between two parallel disks, one of which rotates at a constant angular velocity. The specific application to liquid metal lubrication in thrust bearings is considered. The two field configurations discussed are: an axial magnetic field with a radial current and a radial magnetic field with an axial current. It is shown that the load capacity of the bearing is dependent on the MHD interactions in the fluid and that the frictional torque on the rotor can be made zero for both field configurations by supplying electrical energy through the electrodes to the fluid.


2018 ◽  
Vol 28 (12) ◽  
pp. 2979-2996 ◽  
Author(s):  
A.S. Dogonchi ◽  
Mikhail A. Sheremet ◽  
Ioan Pop ◽  
D.D. Ganji

Purpose The purpose of this study is to investigate free convection of copper-water nanofluid in an upper half of circular horizontal cylinder with a local triangular heater under the effects of uniform magnetic field and cold cylinder shell using control volume finite element method (CVFEM). Design/methodology/approach Governing equations formulated in dimensionless stream function, vorticity and temperature variables using the single-phase nanofluid model with Brinkman correlation for the effective dynamic viscosity and Hamilton and Crosser model for the effective thermal conductivity have been solved numerically by CVFEM. Findings The impacts of control parameters such as the Rayleigh number, Hartmann number, nanoparticles volume fraction, local triangular heater size, shape factor on streamlines and isotherms as well as local and average Nusselt numbers have been examined. The outcomes indicate that the average Nusselt number is an increasing function of the Rayleigh number, shape factor and nanoparticles volume fraction, while it is a decreasing function of the Hartmann number. Originality/value A complete study of the free convection of copper-water nanofluid in an upper half of circular horizontal cylinder with a local triangular heater under the effects of uniform magnetic field and cold cylinder shell using CVFEM is addressed.


Sign in / Sign up

Export Citation Format

Share Document