Design of 2-DOF Compliant Mechanisms to Form Grip-and-Move Manipulators for 2D Workspace

2010 ◽  
Vol 132 (3) ◽  
Author(s):  
N. F. Wang ◽  
K. Tai

This paper demonstrates the design of compliant grip-and-move manipulators by structural optimization using genetic algorithms. The manipulator is composed of two compliant mechanisms (each with two degrees of freedom) that work like two fingers so that the manipulator can grip an object and convey it from one point to another anywhere within a two-dimensional workspace. The synthesis of such compliant mechanisms is accomplished by formulating the problem as a structural topology and shape optimization problem with multiple objectives and constraints to achieve the desired behavior of the manipulator. A multiobjective genetic algorithm is then applied coupled with an enhanced morphological representation for defining and encoding the structural geometry variables. The solution framework is integrated with a nonlinear finite element code for large-displacement analyses of the compliant structures to compute the paths generated by these mechanisms, with the resulting optimal designs used to realize various manipulator configurations.

1998 ◽  
Vol 122 (4) ◽  
pp. 560-566 ◽  
Author(s):  
K. Tai ◽  
T. H. Chee

This paper demonstrates the automatic design synthesis of continuum structures by the process of topology/shape optimization. The problem is solved as a discrete optimization problem using the genetic algorithm (GA). Past efforts using this approach have not been very effective due to the lack of an appropriate structural geometric representation which is highly essential to the success of the evolutionary processes of the GA. Based on the morphology of living creatures, a representation scheme has been developed using arrangements of skeleton and ‘flesh’ to define structural geometry. This scheme facilitates the transmission of topological and shape characteristics across generations in the evolutionary process, and will not render any structurally invalid designs. Good results are illustrated using this scheme to design a compliant mechanism and a cantilever beam. [S1050-0472(00)02104-8]


Robotica ◽  
2021 ◽  
pp. 1-26
Author(s):  
Soheil Zarkandi

Abstract Reducing consumed power of a robotic machine has an essential role in enhancing its energy efficiency and must be considered during its design process. This paper deals with dynamic modeling and power optimization of a four-degrees-of-freedom flight simulator machine. Simulator cabin of the machine has yaw, pitch, roll and heave motions produced by a 4RPSP+PS parallel manipulator (PM). Using the Euler–Lagrange method, a closed-form dynamic equation is derived for the 4RPSP+PS PM, and its power consumption is computed on the entire workspace. Then, a newly introduced optimization algorithm called multiobjective golden eagle optimizer is utilized to establish a Pareto front of optimal designs of the manipulator having a relatively larger workspace and lower power consumption. The results are verified through numerical examples.


2015 ◽  
Vol 35 (4) ◽  
pp. 341-347 ◽  
Author(s):  
E. Rouhani ◽  
M. J. Nategh

Purpose – The purpose of this paper is to study the workspace and dexterity of a microhexapod which is a 6-degrees of freedom (DOF) parallel compliant manipulator, and also to investigate its dimensional synthesis to maximize the workspace and the global dexterity index at the same time. Microassembly is so essential in the current industry for manufacturing complicated structures. Most of the micromanipulators suffer from their restricted workspace because of using flexure joints compared to the conventional ones. In addition, the controllability of micromanipulators inside the whole workspace is very vital. Thus, it is very important to select the design parameters in a way that not only maximize the workspace but also its global dexterity index. Design/methodology/approach – Microassembly is so essential in the current industry for manufacturing complicated structures. Most of the micromanipulators suffer from their restricted workspace because of using flexure joints compared to the conventional ones. In addition, the controllability of micromanipulators inside the whole workspace is very vital. Thus, it is very important to select the design parameters in a way that not only maximize the workspace but also its global dexterity index. Findings – It has been shown that the proposed procedure for the workspace calculation can considerably speed the required calculations. The optimization results show that a converged-diverged configuration of pods and an increase in the difference between the moving and the stationary platforms’ radii cause the global dexterity index to increase and the workspace to decrease. Originality/value – The proposed algorithm for the workspace analysis is very important, especially when it is an objective function of an optimization problem based on the search method. In addition, using screw theory can simply construct the homogeneous Jacobian matrix. The proposed methodology can be used for any other micromanipulator.


Author(s):  
Joost R. Leemans ◽  
Charles J. Kim ◽  
Werner W. P. J. van de Sande ◽  
Just L. Herder

Compliant shell mechanisms utilize spatially curved thin-walled structures to transfer or transmit force, motion or energy through elastic deformation. To design with spatial mechanisms designers need comprehensive characterization methods, while existing methods fall short of meaningful comparisons between rotational and translational degrees of freedom. This paper presents two approaches, both of which are based on the principle of virtual loads and potential energy, utilizing properties of screw theory, Plücker coordinates and an eigen-decomposition, leading to two unification lengths that can be used to compare and visualize all six degrees of freedom directions and magnitudes of compliant mechanisms in a non-arbitrary physically meaningful manner.


2006 ◽  
Vol 10 ◽  
pp. 143-152 ◽  
Author(s):  
Martin Huber ◽  
Horst Baier

An optimization approach is derived from typical design problems of hybrid material structures, which provides the engineer with optimal designs. Complex geometries, different materials and manufacturing aspects are handled as design parameters using a genetic algorithm. To take qualitative information into account, fuzzy rule based systems are utilized in order to consider all relevant aspects in the optimization problem. This paper shows results for optimization tasks on component and structural level.


2016 ◽  
Vol 8 (4) ◽  
Author(s):  
Guimin Chen ◽  
Ruiyu Bai

Modeling large spatial deflections of flexible beams has been one of the most challenging problems in the research community of compliant mechanisms. This work presents a method called chained spatial-beam constraint model (CSBCM) for modeling large spatial deflections of flexible bisymmetric beams in compliant mechanisms. CSBCM is based on the spatial-beam constraint model (SBCM), which was developed for the purpose of accurately predicting the nonlinear constraint characteristics of bisymmetric spatial beams in their intermediate deflection range. CSBCM deals with large spatial deflections by dividing a spatial beam into several elements, modeling each element with SBCM, and then assembling the deflected elements using the transformation defined by Tait–Bryan angles to form the whole deflection. It is demonstrated that CSBCM is capable of solving various large spatial deflection problems either the tip loads are known or the tip deflections are known. The examples show that CSBCM can accurately predict large spatial deflections of flexible beams, as compared to the available nonlinear finite element analysis (FEA) results obtained by ansys. The results also demonstrated the unique capabilities of CSBCM to solve large spatial deflection problems that are outside the range of ansys.


2021 ◽  
Author(s):  
A. Numić ◽  
T. W. A. Blad ◽  
F. van Keulen

Abstract In this paper, a novel method for stiffness compensation in compliant mechanisms is investigated. This method involves tuning the ratio between the first two critical buckling loads. To this end, the relative length and width of flexures in two architectures, a stepped beam and parallel guidance, are adjusted. Using finite element analysis, it is shown that by maximizing this ratio, the actuation force for transversal deflection in post-buckling is reduced. These results were validated experimentally by identifying the optimal designs in a given space and capturing the force-deflection characteristics of these mechanisms.


Author(s):  
Claus B. W. Pedersen ◽  
Thomas Buhl ◽  
Ole Sigmund

Abstract This paper describes the use of topology optimization as a synthesis tool for the design of large-displacement compliant mechanisms. An objective function for the synthesis of large-displacement mechanisms is proposed together with a formulation for synthesis of path-generating compliant mechanisms. The responses of the compliant mechanisms are modelled using a Total Lagrangian finite element formulation, the sensitivity analysis is performed using the adjoint method and the optimization problem is solved using the Method of Moving Asymptotes. Procedures to circumvent some numerical problems are discussed.


Author(s):  
Jayavardhan N. Marehalli ◽  
Robert H. Sturges

Abstract For efficient assembly without feedback systems (or, passive assembly), the assembler should know the ideal orientation of each component and the assembly sequence. A heuristic presented here finds an optimal assembly sequence and prescribes the orientation of the components for a minimum set of grippers — ideally one. The heuristic utilizes an index of difficulty (ID) that quantifies assembly. The ID for each task in the assembly process is computed based on a number of geometrical and operational properties. The objective of the optimization problem here is to minimize the assembly ID and categorize parts/subassemblies based on their preferred direction of assembly while allowing re-orientation of the base part. It is assumed that the preferred direction of assembly is vertically downwards consistent with manual as well as most automatic assembly protocols. Our attempt is to minimize the number of degrees of freedom required in a re-orienting fixture and mathematically derive the requirements for such a fixture. The assembly of a small engine is used as an example in this study due to the variety of ideally rigid parts involved.


2018 ◽  
Vol 885 ◽  
pp. 199-210 ◽  
Author(s):  
Michael Hartisch ◽  
Alexander Herbst ◽  
Ulf Lorenz ◽  
Jonas Benjamin Weber

Resilience of a technical system is the ability to overcome minor failures and thus to avoid a complete breakdown of its vital functions. A possible failure of the system's components is one critical case the system designer should keep in mind. From another perspective resilience can be interpreted as the existence of alternative paths in a process network if resources break down. In this context we deal with process networks corresponding to systems which must be designed to operate in different scenarios. In order to ensure the system's functionality and to step in as a replacement in case of failure a set of optional resources must be available. This means that the process network must have several degrees of freedom allowing to react to uncertain events. With those restrictions we try to find a preferably resource-efficient network. Hence, an optimization problem arises which can be modeled using quantified mixed-integer linear programming. As an example of a process which can be modeled using process networks we investigate the problem of finding cost-efficient resilient topologies of fluid systems that are able to fulfill different load scenarios.


Sign in / Sign up

Export Citation Format

Share Document