Projection-Based Control of Parallel Mechanisms

Author(s):  
Farhad Aghili

The unifying idea for most model-based control approaches for parallel mechanism is to derive a minimal-order dynamics model of the system and then design the corresponding controller. The problem with such a control approach is that the controller needs to change its structure whenever the mechanical system changes its number of degrees-of-freedom. This paper presents a projection-based control scheme for parallel mechanism that works whether the system is overactuated or not; it does not require derivation of the minimal-order dynamics model. Since the dimension of the projection matrix is fixed, the projection-based controller does not need to change its structure whenever the mechanical system changes its number of degrees-of-freedom. The controller also allows to specify lower and upper bounds on the actuator forces/torques, making it suitable not only for the control of parallel manipulators with limited force/torque capability of the actuators but also for backlash-free control of parallel manipulators as well as for control of tendon driven parallel manipulators. The stability of the projection-based controllers is rigourously proved, while the condition for the controllability of parallel manipulators is also derived in detail. Finally, experimental results obtained from a simple parallel mechanism, which changes its degrees-of-freedom, are appended. The results also demonstrate that the maximum actuator torque can be reduced by 20% if the actuator saturation is taken into account by the controller.

2013 ◽  
Vol 135 (10) ◽  
Author(s):  
Mats Isaksson ◽  
Matthew Watson

Parallel manipulators possess several advantages compared to serial robots, including the possibilities for high acceleration and high accuracy positioning of the manipulated platform. However, the majority of all proposed parallel mechanisms suffer from the combined drawbacks of a small positional workspace in relation to the manipulator footprint and a limited range of rotations of the manipulated platform. This paper analyses a recently proposed six-degrees-of-freedom parallel mechanism that aims to address both these issues while maintaining the traditional advantages of a parallel mechanism. The investigated manipulator consists of six actuated coaxial upper arms that are allowed to rotate indefinitely around a central cylindrical base column and a manipulated platform where five of the six joint positions are collinear. The axis-symmetric arm system leads to an extensive positional workspace while the proposed link arrangement increases the range of achievable platform rotations. The manipulator workspace is analyzed in detail and two methods to further increase the rotational workspace are presented. It is shown that the proposed manipulator has the possibility of a nonsingular transition of assembly modes, which extends the usable workspace. Furthermore, it is demonstrated how an additional kinematic chain can be utilized to achieve infinite platform rotation around one platform axis. By introducing additional mobility in the manipulated platform, a redundantly actuated mechanism is avoided.


2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110177
Author(s):  
Jia Yonghao ◽  
Chen Xiulong

For spatial multibody systems, the dynamic equations of multibody systems with compound clearance joints have a high level of nonlinearity. The coupling between different types of clearance joints may lead to abundant dynamic behavior. At present, the dynamic response analysis of the spatial parallel mechanism considering the three-dimensional (3D) compound clearance joint has not been reported. This work proposes a modeling method to investigate the influence of the 3D compound clearance joint on the dynamics characteristics of the spatial parallel mechanism. For this purpose, 3D kinematic models of spherical clearance joint and revolute joint with radial and axial clearances are derived. Contact force is described as normal contact and tangential friction and later introduced into the nonlinear dynamics model, which is established by the Lagrange multiplier technique and Jacobian of constraint matrix. The influences of compound clearance joint and initial misalignment of bearing axes on the system are analyzed. Furthermore, validation of dynamics model is evaluated by ADAMS and Newton–Euler method. This work provides an essential theoretical basis for studying the influences of 3D clearance joints on dynamic responses and nonlinear behavior of parallel mechanisms.


Author(s):  
ChiHyo Kim ◽  
KunWoo Park ◽  
TaeSung Kim ◽  
MinKi Lee

This paper designs a four legged parallel mechanism to improve the dexterity of three layered parallel walking robot. Topology design is conducted for a leg mechanism composed of four legs, base and ground, which constitute a redundant parallel mechanism. This mechanism is subdivided into four sub-mechanism composed of three legs. A motor vector is adopted to determine the 6×8 Jacobian of the redundant parallel mechanism and the 6×6 Jacobian of the sub-mechanisms, respectively. The condition number of the Jacobian matrix is used as an index to measure a dexterity. We analyze the condition numbers of the Jacobian over the positional and orientational walking space. The analytical results show that a sub-mechanism has lots of singularities within workspace but they are removed by a redundant parallel mechanism improving the dexterity. This paper presents a parallel typed walking robot to enlarge walking space and stability region. Seven types of three layered walking robots are designed by inserting an intermediate mechanism between the upper and the lower legged parallel mechanisms. They provide various types of gaits to walk rough terrain and climb over a wall with small degrees of freedom.


Robotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 66
Author(s):  
Maurizio Ruggiu ◽  
Xianwen Kong

This paper deals with the reconfiguration analysis of a 3-DOF (degrees-of-freedom) parallel manipulator (PM) which belongs to the cylindrical parallel mechanisms family. The PM is composed of a base and a moving platform shaped as equilateral triangles connected by three serial kinematic chains (legs). Two legs are composed of two universal (U) joints connected by a prismatic (P) joint. The third leg is composed of a revolute (R) joint connected to the base, a prismatic joint and universal joint in sequence. A set of constraint equations of the 1-RPU−2-UPU PM is derived and solved in terms of the Euler parameter quaternion (a.k.a. Euler-Rodrigues quaternion) representing the orientation of the moving platform and of the Cartesian coordinates of the reference point on the moving platform. It is found that the PM may undergo either the 3-DOF PPR or the 3-DOF planar operation mode only when the base and the moving platform are identical. The transition configuration between the operation modes is also identified.


2013 ◽  
Vol 456 ◽  
pp. 146-150
Author(s):  
Zhi Jiang Xie ◽  
Jun Zhang ◽  
Xiao Bo Liu

This paper designed a kind of parallel mechanism with three degrees of freedom, the freedom and movement types of the robot are analyzed in detail, the parallel mechanisms Kinematics positive and inverse solutions are derived through using the vector method. And at last its workspace is analyzed and studied systematically.


Author(s):  
Yanwen Li ◽  
Yueyue Zhang ◽  
Lumin Wang ◽  
Zhen Huang

This paper investigates a novel 4-DOF 3-RRUR parallel manipulator, the number and the characteristics of its degrees of freedom are determined firstly, the rational input plan and the invert and forward kinematic solutions are carried out then. The corresponding numeral example of the forward kinematics is given. This type of parallel manipulators has a symmetrical structure, less accumulated error, and can be used to construct virtual-axis machine tools. The analysis in this paper will play an important role in promoting the application of such manipulators.


2010 ◽  
Vol 4 (4) ◽  
pp. 338-345 ◽  
Author(s):  
Jumpei Arata ◽  
◽  
Hideo Fujimoto

With haptic devices becoming increasingly common in both industrial field and consumer use, parallel mechanisms have been widely introduced for their high rigidity, output, accuracy and high backdrivability due to their multi-legged structure and fixed base actuators. In general parallel mechanism, redundancy enlarges the working area and avoids singularity. The redundant parallel mechanism we present introduces these advantages into haptic applications. Introducing this mechanism into a multiple degrees-of-freedom (DOF) structure realizes a wide range of working areas in rotation. The redundant parallel mechanism implemented in translational force display device, and multi-DOF force display device demonstrate the advantages of the redundant parallel mechanism in haptic applications. Following an overview, we introduce the prototype implementation and evaluation of these devices and discuss the effectiveness of the redundant parallel mechanism in haptic applications.


Robotica ◽  
2009 ◽  
Vol 28 (3) ◽  
pp. 359-368 ◽  
Author(s):  
Houssem Abdellatif ◽  
Bodo Heimann

SUMMARYThe paper presents a self-contained approach for the dynamics identification of six degrees of freedom (DOF) parallel robots. Major feature is the consequent consideration of structural properties of such machines to provide an experimentally adequate identification method. The known periodic excitation is modified and enhanced to take the actuator coupling as well as the numerical solution of the direct kinematics into account. The benefits of explicit frequency-domain data filtering are demonstrated. Additionally, a new implementation of the maximum-likelihood estimator allows for automatic tuning of the data filter. The issue of optimal input experiment design is also discussed and substantiated with extensive experiments.


2021 ◽  
Vol 12 (2) ◽  
pp. 983-995
Author(s):  
Shihua Li ◽  
Yajie Zhou ◽  
Yanxia Shan ◽  
Shuang Chen ◽  
Jinhan Han

Abstract. In the fields of electronic packaging, micromanipulation, scanning, and two translational (2T) mechanisms are required, especially with high stiffness, for a large workspace, with good driving stability, and other occasions. Redundant actuators are required to improve the performance of the 2T compliant parallel mechanism. The novelty of the work is to propose a new method for the type synthesis of a 2T redundant actuated compliant parallel mechanism based on the freedom and constraint topology (FACT) approach and the atlas approach. The synthesis conditions are given, and the synthesis process is formulated. With this method, new 2T redundant actuated compliant parallel mechanisms are synthesized. Some new mechanisms have been synthesized, which enriches the compliant parallel mechanism configurations. Based on the atlas method, the synthesized mechanism is analyzed. The results verify the correctness and effective of the synthesis method. The method is also suitable for a type of synthesis of redundant actuated compliant parallel mechanisms with 3, 4, 5, and 6 degrees of freedom (DOF), respectively.


Author(s):  
Change-de Zhang ◽  
Shin-Min Song

Abstract This paper presents a novel class of hybrid manipulators composed of two serially connected parallel mechanisms, each of which has three degrees of freedom. The lower and upper platforms respectively control the position and orientation of the end-effector. The advantages of this type of hybrid manipulator are larger workspace (as compared with parallel manipulators) and better rigidity and higher load-carrying capability (as compared with serial manipulators). The closed-form solutions of the forward and inverse position analyses are discussed. For forward position analysis, it is shown that the resultant equation for the positional mechanism is an 8-th order, a 6-th order, a 4-th order, or a 2-nd order polynomial, depending on the geometry and joint types of the passive subchain, while for the orientational mechanism, it is an 8-th order, or a 2-nd polynomial depending on the geometry. For inverse position analysis, it is demonstrated that the positional and orientational mechanisms both possess analytical closed-form solutions.


Sign in / Sign up

Export Citation Format

Share Document