Effects of Suction and Blowing on Flow and Heat Transfer Between Two Rotating Spheres With Time-Dependent Angular Velocities

2011 ◽  
Vol 133 (7) ◽  
Author(s):  
Omid Mahian ◽  
Asgahr B. Rahimi ◽  
Ali Jabari Moghadam

The effect of suction and blowing in the study of flow and heat transfer of a viscous incompressible fluid between two vertically eccentric rotating spheres is presented when the spheres are maintained at different temperatures and rotating about a common axis while the angular velocities of the spheres are arbitrary functions of time. The resulting flow pattern, temperature distribution, and heat transfer characteristics are presented for the various cases including exponential and sinusoidal angular velocities. These presentations are for various values of the flow parameters including rotational Reynolds number Re, and the blowing/suction Reynolds number Rew. The effects of transpiration and eccentricity on viscous torques at the inner and outer spheres are studied, too. As the eccentricity increases and the gap between the spheres decreases the viscous torque remains nearly unchanged. Results for special case of concentric spheres are obtained by letting eccentricity tend to zero.

2008 ◽  
Vol 130 (7) ◽  
Author(s):  
Ali Jabari Moghadam ◽  
Asghar Baradaran Rahimi

The transient motion and the heat transfer of a viscous incompressible fluid contained between two vertically eccentric spheres maintained at different temperatures and rotating about a common axis with different angular velocities are numerically considered when the angular velocities are arbitrary functions of time. The resulting flow pattern, temperature distribution, and heat transfer characteristics are presented for the various cases including exponential and sinusoidal angular velocities. Long delays in heat transfer of large portions of the fluid in the annulus are observed because of the angular velocities of the corresponding spheres. As the eccentricity increases and the gap between the spheres decreases, the Coriolis forces and convection heat transfer effect in the narrower portion increase. Special results for concentric spheres are obtained by letting eccentricity tends to zero.


2021 ◽  
Vol 2039 (1) ◽  
pp. 012021
Author(s):  
A V Mityakov ◽  
A A Gusakov ◽  
M A Grekov ◽  
V V Seroshtanov

Abstract The paper aims to investigate the dependence of heat transfer classification on the Reynolds number (Re) during flow around circular heated cylinders row. The investigated range of Re number varies from 4.5×103 up to 42×103. The distance between cylinders S was changed from 0.5d to 4d (where d is the cylinders dia). Cylinders surface temperature was kept constant. For each Re number, the case when the cylinders were mounted one after the other was investigated. To measure heat transfer and flow parameters (velocity, heat flux and heat transfer coefficient) near and at the cylinders surface, two experimental methods were used: gradient heatmetry and PIV. Heat flux and velocity fields were obtained from gradient heatmetry and PIV results, based on which the flow mode could be determined and compared with heat transfer mode. As a result, it was found that heat transfer is influenced by both the Reynolds number and the distance between the cylinders. The observed features are associated with influence on characteristics such as separation point location, boundary layer thickness, change in flow between the cylinders and vortices formation.


1976 ◽  
Vol 98 (4) ◽  
pp. 601-608 ◽  
Author(s):  
K. N. Astill

A numerical solution for predicting the behavior of laminar flow and heat transfer between concentric spheres is developed. Axial symmetry is assumed. The Navier-Stokes equations and energy equation are simplified to parabolic form and solved using finite-difference methods. Hydrodynamic and energy equations are uncoupled, which allows the hydrodynamic problem to be solved independently of the heat-transfer problem. Velocity and temperature are calculated in terms of the two spatial coordinates. Solutions depend on radius ratio of the concentric spheres, Reynolds number of the flow, Prandtl number, initial conditions of temperature and velocity, temperature distribution along the spherical surfaces, and azimuthal position of the start of the flow. The effect on flow and heat transfer of these variables, except surface temperature distribution, is evaluated. While the computer solution is not restricted to isothermal spheres, this is the only case treated. Velocity profiles, pressure distribution, flow losses, and heat-transfer coefficients are determined for a variety of situations. Local and average Nusselt numbers are computed, and a correlation is developed for mean Nusselt number on the inner surface as a function of Reynolds number, Prandtl number, and radius ratio. Flow separation is predicted by the analysis. Separation is a function of Reynolds number, radius ratio, and azimuthal location of the initial state. Separation was observed at the outer surface as well as from the inner surface under some conditions. In cases where separation occurred, the solution was valid only to the point of separation.


Author(s):  
Cody Dowd ◽  
Danesh Tafti

The focus of this research is to predict the flow and heat transfer in a rotating two-pass duct geometry with staggered ribs using Large-Eddy Simulations (LES). The geometry consists of a U-Bend with 17 ribs in each pass. The ribs are staggered with an e/Dh = 0.1 and P/e = 10. LES is performed at a Reynolds number of 100,000, a rotation number of 0.2 and buoyancy parameters (Bo) of 0.5 and 1.0. The effects of Coriolis forces and centrifugal buoyancy are isolated and studied individually. In all cases it is found that increasing Bo from 0.5 to 1.0 at Ro = 0.2 has little impact on heat transfer. It is found that in the first pass, the heat transfer is quite receptive to Coriolis forces which augment and attenuate heat transfer at the trailing and leading walls, respectively. Centrifugal buoyancy, on the other hand has a bigger effect in augmenting heat transfer at the trailing wall than in attenuating heat transfer at the leading wall. On contrary, it aids heat transfer in the second half of the first pass at the leading wall by energizing the flow near the wall. The heat transfer in the second pass is dominated by the highly turbulent flow exiting the bend. Coriolis forces have no impact on the augmentation of heat transfer on the leading wall till the second half of the passage whereas it attenuates heat transfer at the trailing wall as soon as the flow exits the bend. Contrary to phenomenological arguments, inclusion of centrifugal buoyancy augments heat transfer over Coriolis forces alone on both the leading and trailing walls of the second pass.


Author(s):  
Marcelo J. S. deLemos ◽  
Paulo H. S. Carvalho

This paper presents computations for natural convection within a porous cavity filled with a fluid saturated permeable medium. The finite volume method in a generalized coordinate system is applied. The walls are maintained at constant but different temperatures, while the horizontal walls are kept insulated. Governing equations are written in terms of primitive variables and are recast into a general form. Flow and heat transfer characteristics are investigated for two energy models and distinct solid-to-fluid thermal conductivity ratio.


2020 ◽  
Vol 24 (2 Part A) ◽  
pp. 767-775 ◽  
Author(s):  
Djamel Sahel ◽  
Houari Ameur ◽  
Touhami Baki

The baffling technique is well-known for its efficiency in terms of enhancement of heat transfer rates throught channels. However, the baffles insert is accompanied by an increase in the friction factor. This issue remains a great challenge for the designers of heat exchangers. To overcome this issue, we suggest in the present paper a new design of baffles which is here called graded baffle-design. The baffles have an up- or down-graded height along the channel length. This geometry is characterized by two ratios: up-graded baffle ratio and down-graded baffle ratio which are varied from 0-0.08. For a range of Reynolds number varying from 104 to 2 ? 104, the turbulent flow and heat transfer characteristics of a heat exchanger channel are numerically studied by the computer code FLUENT. The obtained results revealed an enhancement in the thermohydraulic performance offered by the new suggested design. For the channel with a down-graded baffle ratio equal to 0.08, the friction factors decreased by 4-8%


2020 ◽  
Vol 24 (5 Part A) ◽  
pp. 2729-2741
Author(s):  
Zhenchuan Wang ◽  
Guoli Qi ◽  
Meijun Li

The turbulence model fails in supercritical fluid-flow and heat transfer simulation, owing to the drastic change of thermal properties. The inappropriate buoyancy effect model and the improper turbulent Prandtl number model are several of these factors lead to the original low-Reynolds number turbulence model unable to predict the wall temperature for vertically heated tubes under the deteriorate heat transfer conditions. This paper proposed a simplified improved method to modify the turbulence model, using the generalized gradient diffusion hypothesis approximation model for the production term of the turbulent kinetic energy due to the buoyancy effect, using a turbulence Prandtl number model for the turbulent thermal diffusivity instead of the constant number. A better agreement was accomplished by the improved turbulence model compared with the experimental data. The main reason for the over-predicted wall temperature by the original turbulence model is the misuse of the buoyancy effect model. In the improved model, the production term of the turbulent kinetic energy is much higher than the results calculated by the original turbulence model, especially in the boundary-layer. A more accurate model for the production term of the turbulent kinetic energy is the main direction of further modification for the low Reynolds number turbulence model.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5485
Author(s):  
Rajendra S. Rajpoot ◽  
Shanmugam. Dhinakaran ◽  
Md. Mahbub Alam

The present study deals with the numerical simulation of mixed convective heat transfer from an unconfined heated square cylinder using nanofluids (Al2O3-water) for Reynolds number (Re) 10–150, Richardson number (Ri) 0–1, and nanoparticles volume fractions (φ) 0–5%. Two-phase modelling approach (i.e., Eulerian-mixture model) is adopted to analyze the flow and heat transfer characteristics of nanofluids. A square cylinder with a constant temperature higher than that of the ambient is exposed to a uniform flow. The governing equations are discretized and solved by using a finite volume method employing the SIMPLE algorithm for pressure–velocity coupling. The thermo-physical properties of nanofluids are calculated from the theoretical models using a single-phase approach. The flow and heat transfer characteristics of nanofluids are studied for considered parameters and compared with those of the base fluid. The temperature field and flow structure around the square cylinder are visualized and compared for single and multi-phase approaches. The thermal performance under thermal buoyancy conditions for both steady and unsteady flow regimes is presented. Minor variations in flow and thermal characteristics are observed between the two approaches for the range of nanoparticle volume fractions considered. Variation in φ affects CD when Reynolds number is varied from 10 to 50. Beyond Reynolds number 50, no significant change in CD is observed with change in φ. The local and mean Nusselt numbers increase with Reynolds number, Richardson number, and nanoparticle volume fraction. For instance, the mean Nusselt number of nanofluids at Re = 100, φ = 5%, and Ri = 1 is approximately 12.4% higher than that of the base fluid. Overall, the thermal enhancement ratio increases with φ and decreases with Re regardless of Ri variation.


2012 ◽  
Vol 16 (2) ◽  
pp. 593-603 ◽  
Author(s):  
M. Nili-Ahmadabadi ◽  
H. Karrabi

This paper will present the results of the experimental investigation of heat transfer in a non-annular channel between rotor and stator similar to a real generator. Numerous experiments and numerical studies have examined flow and heat transfer characteristics of a fluid in an annulus with a rotating inner cylinder. In the current study, turbulent flow region and heat transfer characteristics have been studied in the air gap between the rotor and stator of a generator. The test rig has been built in a way which shows a very good agreement with the geometry of a real generator. The boundary condition supplies a non-homogenous heat flux through the passing air channel. The experimental devices and data acquisition method are carefully described in the paper. Surface-mounted thermocouples are located on the both stator and rotor surfaces and one slip ring transfers the collected temperature from rotor to the instrument display. The rotational speed of rotor is fixed at three under: 300rpm, 900 rpm and 1500 rpm. Based on these speeds and hydraulic diameter of the air gap, the Reynolds number has been considered in the range: 4000<Rez<30000. Heat transfer and pressure drop coefficients are deduced from the obtained data based on a theoretical investigation and are expressed as a formula containing effective Reynolds number. To confirm the results, a comparison is presented with Gazley?s (1985) data report. The presented method and established correlations can be applied to other electric machines having similar heat flow characteristics.


Sign in / Sign up

Export Citation Format

Share Document