scholarly journals On the Development of a Low Cost Pyrheliometer

2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Michael Gnos ◽  
Brenton Greska ◽  
Anjaneyulu Krothapalli

A low cost pyrheliometer, based on a thermoelectric sensor, was developed at the Energy and Sustainability Center at the Florida State University. In addition, an inexpensive double-axis tracking device, capable of autonomous operation, enables the pyrheliometer to operate as a stand-alone system. Widely available off-the-shelf components were used and compromises in accuracy and time responsiveness were made in order to keep the cost low. The obtained data was compared with an Eppley Normal Incidence Pyrheliometer (NIP) using model ST-1 solar tracker. Steady state values of irradiance were measured with an accuracy better than ±2%. Transient measurements are time delayed by a thermal lag of about 2 min, which leads to a high error for instantaneous measured values. However, the integrated irradiance over the course of any given day yields irradiation values with accuracy better than ±2%, even on days when the sun and clouds quickly alternate. Based on a manufacturing cost analysis, the prototype pyrheliometer system is anticipated to cost an order of magnitude less than commercially available products if mass-produced.

Author(s):  
Michael Gnos ◽  
Brenton Greska ◽  
Anjaneyulu Krothapalli

A low cost pyrheliometer, based on a thermoelectric sensor, was developed at the Energy and Sustainability Center at the Florida State University. In addition, an inexpensive double-axis tracking device, capable of autonomous operation, enables the pyrheliometer to operate as a stand-alone system. Widely available off-the-shelf components were used and compromises in accuracy and time responsiveness were made in order to keep the cost low. The obtained data was compared with an Eppley Normal Incidence Pyrheliometer (NIP) using model ST-1 solar tracker. Steady state values of irradiance were measured with an accuracy better than ±2%. Transient measurements are time delayed by a thermal lag of about two minutes, which leads to a high error for instantaneous measured values. However, the integrated irradiance over the course of any given day yields irradiation values with accuracy better than ±2%, even on days when the sun and clouds quickly alternate. Based on a manufacturing cost analysis, the prototype pyrheliometer is anticipated to cost less than $500 if mass-produced.


1991 ◽  
Vol 246 ◽  
Author(s):  
Ir. J. Van Humbeeck

AbstractA more systematic marketing research approach has finally revealed good ideas anticipating a market need for the use of shape memory alloys. The success of those new ideas, prototypes and applications are analysed in terms of “the value of the function”, defined as the importance of the function divided by the cost of providing the function. A high importance and/or a low cost of the function are thus the basic requirements for the successful introduction of shape memory applications. Attention is also paid to the way how the 4 P's, product, price, place, promotion (the marketing mix) are applied by the European companies. Those different items will be illustrated on the basis of some small-, medium- and largescale applications, used in different markets. “to the point research”, fundamental and applied, on material properties as well as on manufacturing (cost reduction) is being discussed as the key factor to increase the function value.


Author(s):  
Chan Men Loon ◽  
Muhamad Zalani Daud

This paper presents development of a prototype sensorless dual axis solar tracker for maximum extraction of solar energy. To prove the concept and evaluate the proposed algorithm, a low cost widely availabe materials were used which was programmed based on Arduino microcontroller. The porposed algorithm works based on two search methods namely the global search that approximates the best point location in a region, and local search that further determines the actual sun’s position. Experimental results showed that the proposed algorithm gives better performance compared to the existing sun position algorithm (SPA) - based method as well as the fixed panel system. In terms of total output power, the proposed algorithm gives 17.96% more efficient than the fixed system and 6.38% better than the SPA-based system. Furthermore, the percentage error of the experimental measured angle to the actual sun azimuth angle was relatively minimal (less than 3%) during clear day operation. The system was proven to be effective in tracking the sun for improved energy production of solar PV panels and the proposed algorithm also can be used for designing the tracker with larger size of solar PV systems.


2014 ◽  
Vol 687-691 ◽  
pp. 4996-4999
Author(s):  
Zhang Rong

With the constraints on manufacturing capacity, the satisfaction of product performance and the cost of manufacture are contradictory, the problem between high-performance and low-cost must be solved at the period of design and manufacture for product. To solve this problem, the product loss model has been analyzed, the parameterized and non-parameterized model of anticipant losses has been researched, with concurrent design, in connection with the product with multiple correlated assembly functional dimensions, the relation function between quality loss and process dimension tolerance has been provided, the concurrent tolerance design mathematical model based on lowest-cost and quality loss has been established. The applied case shows that this method has important guiding significance for engineering application.


2013 ◽  
Vol 551 ◽  
pp. 11-15 ◽  
Author(s):  
J.C. Withers ◽  
V. Shapovalov ◽  
R. Storm ◽  
R.O. Loutfy

In spite of titanium’s excellent combinations of lightweight, mechanical properties, and corrosion resistance it has been excluded from many applications because of its high cost in fabricated componentry. The major cost to produce a titanium alloy component is the processing of the sponge into alloy plus the several processing steps for fabricating the final finished component. If low cost titanium is to become a reality, the cost of post sponge processing to final finished components must be dramatically reduced. Processing to convert sponge directly in one step to an alloyed near net shape low cost component has been demonstrated. The mechanical properties are equivalent to better than standard processed wrought titanium. Example, automotive components and other applications that confirm titanium componentry at substantially lower cost than standard processing will be provided.


1994 ◽  
Vol 23 (468) ◽  
Author(s):  
Henrik Esbensen

<p>A new Genetic Algorithm (GA) for the Steiner Problem in a Graph (SPG) is presented. The algorithm is based on a bitstring encoding. A bitstring specifies selected Steiner vertices and the corresponding Steiner tree is computed using the Distance Network Heuristic. This scheme ensures that every bitstring correspond to a valid Steiner tree and thus eliminates the need for penalty terms in the cost function.</p><p> </p><p>The GA is tested on all SPG instances from the OR-Library of which the largest graphs have 2,500 vertices and 62,500 edges. When executed 10 times on each of 58 graph examples, the GA finds the global optimum at least once for 55 graphs and every time for 43 graphs. In total the GA finds the global optimum in 77 % of all program executions and is within 1 % from the global optimum in more than 92 % of all executions.</p><p> </p><p>The performance is compared to that of two branch-and-cut algorithms and one of the very best deterministic heuristics, an iterated version of the Shortest Path Heuristic (SPH-I). For all test examples but one, even the worst result ever found by the GA is equal to or better than the result of SPH-I and in many cases the average error ratio of the GA is an order of magnitude better than that of SPH-I. The runtime of the GA is moderate for all test examples. This is in contrast to SPH-I as well as the branch-and-cut algorithms, for which the runtime in some cases are extremely high.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Qasem Abdelal ◽  
Ahmad Al-Hmoud

Climate change has increasingly been considered responsible for irregular weather patterns leading to many environmental hazards and catastrophes. Coping with these conditions and providing effective solutions require monitoring and collecting data of various hydrological parameters and events in high spatial and temporal resolutions, which is generally limited by the cost and energy requirements of the monitoring devices. In this work, we push the limit of the current low-cost data acquisition capabilities by developing the HydroMon3: a hydrological monitoring platform that collects, stores, and transmits high temporal resolution data reliably and accurately, and capable of interfacing different types of sensors. The modular design is driven by utilizing the recent burst in commercially available IoT-related electronics modules to minimize the cost and maximize flexibility, while applying various hardware and software techniques to ensure reliability and energy performance. Stream stage and tipping bucket monitoring units based on the HydroMon3 platform were deployed to more than 20 locations in two different watersheds, and their performance over a 6-month season was evaluated. Collected data for a number of storms provided important insights for linking hydrological events and showed substantial variability in the monitored parameters both spatially and temporally, which were compared with local data records and confirmed that conventional hydrological data acquisition methods are under representative of the actual events. Field-proven results demonstrate the units’ ability to maintain autonomous operation from several months for the stream stage monitors to years for the rainfall gauges using of-the-shelf AA batteries.


Author(s):  
Damitha Sandaruwan ◽  
Nihal Kodikara ◽  
Chamath Keppitiyagama ◽  
Rexy Rosa ◽  
Kapila Dias ◽  
...  

Games are used for other purposes than providing entertainment. This chapter is particularly interested in serious games, also known as simulators, with immersive virtual reality environments that are used for training and teaching purposes. These simulators have very stringent requirements and as a result, they are expensive to build. However, the authors managed to develop a ship handling simulator for the Sri Lanka Navy, at a cost of less than $20,000, which is an order of magnitude less costly than the cheapest available ship handling simulators. The cost of the simulator was kept at a minimum by using Commodity-Off-The-Shelf (COTS) hardware, Free and Open Source Software (FOSS), and also by adopting a development strategy which kept the client involved in the complete life cycle of the development. The availability of the required manpower at a very low cost in Sri Lanka was also beneficial.


Author(s):  
Sophie Menzer ◽  
Grover Coors ◽  
Dustin Beeaff ◽  
Dan Storjohann

Manufacturing cost remains one of the major issues facing the solid oxide fuel cell (SOFC) industry. In the anode supported SOFC design, the cermet anode constitutes around 90% of the total material required to build a cell, making the technology very sensitive to anode raw material price. A new patent-pending process called “nickel yttria reaction-sintered zirconia (NiYRSZ)” has been developed for manufacturing SOFC anodes at a fraction of the cost. Typically, the solid component of the anode consists of about 50/50 volume percent nickel and 8 mole percent yttria stabilized zirconia, the latter being a rather costly material. It was discovered that zirconia and yttria powders sintered in the presence of nickel oxide readily form the cubic phase at moderate temperature. Cells manufactured using this process show excellent microstructures for anode supports: a strong bond between the electrolyte and the anode, and a high porosity without addition of pore formers. The strength of the anode was 100 MPa making the material equivalent or slightly superior to an anode fabricated with the traditional NiO/8YSZ material of similar porosity. The resistivity of the material was measured at 850°C and found to be less than 2 mΩ·cm. Cell performance was also compared to cells manufactured with traditional material. Every indication is that SOFC anodes fabricated with this new method perform as well as anodes made with the conventional material set.


2020 ◽  
Author(s):  
Yanzhe Qin ◽  
Stephan Koehler ◽  
Shengming Zhao ◽  
Ruibin Mai ◽  
Zhuo Liu ◽  
...  

The speed1–3, expense1–4 and throughput2 of genomic sequencing impose limitations on its use for time-sensitive acute cases, such as rare4,5 or antibiotic resistant infections6, and large-scale testing that is necessary for containing COVID-19 outbreaks using source-tracing7–9. The major bottleneck for increasing the bandwidth and decreasing operating costs of next-generation sequencers (NGS) is the flow cell that supplies reagents for the biochemical processes; this subsystem has not significantly improved since 200510–12. Here we report a new method for sourcing reagents based on surface coating technology (SCT): the DNA adhered onto the biochip is directly contacted by a reagent-coated polymeric strip. Compared with flow cells the reagent layers are an order of magnitude thinner while both the reagent exchange rate and biochip area are orders of magnitude greater. These improvements drop the turn-around time from days to twelve hours and the cost for whole genome sequencing (WGS) from about $1000 to $15, as well as increase data production by several orders of magnitude. This makes NGS more affordable than many blood tests while rapidly providing detailed genomic information about microbial and viral pathogens6,13, cancers14 and genetic disorders for targeted treatments6 and personalized medicine6,15. This data can be pooled in population-wide databases for accelerated research and development as well providing detailed real-time data for tracking and containing outbreaks, such as the current COVID-19 pandemic.


Sign in / Sign up

Export Citation Format

Share Document