Experimental Investigation of Time-Frequency Characteristics of Pressure Fluctuations in a Double-Suction Centrifugal Pump

2011 ◽  
Vol 133 (10) ◽  
Author(s):  
Zhifeng Yao ◽  
Fujun Wang ◽  
Lixia Qu ◽  
Ruofu Xiao ◽  
Chenglian He ◽  
...  

Pressure fluctuation is the primary reason for unstable operations of double-suction centrifugal pumps. By using flush mounted pressure transducers in the semispiral suction chamber and the volute casing of a double-suction pump, the pressure fluctuation signals were obtained and recorded at various operating conditions. Spectral analyses were performed on the pressure fluctuation signals in both frequency domain and time-frequency domain based on fast Fourier transform (FFT) and an adaptive optimal-kernel time-frequency representation (AOK TFR). The results show that pressure fluctuations at the impeller rotating frequency and some lower frequencies dominated in the semispiral suction chamber. Pressure fluctuations at the blade passing frequency, the impeller rotating frequency, and their harmonic frequencies were identified in the volute casing. The amplitude of pressure fluctuation at the blade passing frequency significantly increased when the flow rate deviated from the design flow rate. At 107% of the design flow rate, the amplitude increased more than 254% than that at the design flow rate. The time-frequency characteristics of these pressure fluctuations were affected greatly by both operating conditions and measurement locations. At partial flow rates the pulsation had a great irregularity and the amplitudes at the investigated frequencies were much larger than ones at the design flow rate. An asymmetrical pressure fluctuation structure in the volute casing was observed at all flow rates. The pulsation behavior at the blade passing frequency was the most prominent near the volute tongue zone, and the pressure waves propagated in both the radial and circumferential directions.

2019 ◽  
Vol 36 (4) ◽  
pp. 401-410 ◽  
Author(s):  
Xiao-Qi Jia ◽  
Bao-Ling Cui ◽  
Zu-Chao Zhu ◽  
Yu-Liang Zhang

Abstract Affected by rotor–stator interaction and unstable inner flow, asymmetric pressure distributions and pressure fluctuations cannot be avoided in centrifugal pumps. To study the pressure distributions on volute and front casing walls, dynamic pressure tests are carried out on a centrifugal pump. Frequency spectrum analysis of pressure fluctuation is presented based on Fast Fourier transform and steady pressure distribution is obtained based on time-average method. The results show that amplitudes of pressure fluctuation and blade-passing frequency are sensitive to the flow rate. At low flow rates, high-pressure region and large pressure gradients near the volute tongue are observed, and the main factors contributing to the pressure fluctuation are fluctuations in blade-passing frequency and high-frequency fluctuations. By contrast, at high flow rates, fluctuations of rotating-frequency and low frequencies are the main contributors to pressure fluctuation. Moreover, at low flow rates, pressure near volute tongue increases rapidly at first and thereafter increases slowly, whereas at high flow rates, pressure decreases sharply. Asymmetries are observed in the pressure distributions on both volute and front casing walls. With increasing of flow rate, both asymmetries in the pressure distributions and magnitude of the pressure decrease.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Xuelin Tang ◽  
Mingde Zou ◽  
Fujun Wang ◽  
Xiaoqin Li ◽  
Xiaoyan Shi

The RNG k-ε turbulence model combined with cavitation model was used to simulate unsteady cavitating flows inside a double-suction centrifugal pump under different flow rate conditions based on hexahedral structured grid. The numerical external characteristic performances agree well with the experimental performances. The predicted results show that the turbulence kinetic energy and the turbulence dissipation rate inside the impeller at design flow rate are lower than those at other off-design flow rates, which are caused by various vortexes. Based on frequency-domain analyses in the volute casing, the blade passing frequency is the dominant one of the pressure fluctuations except the vicinity of volute tongue for all operating cases, and the dominant frequency near the volute tongue ranges from 0 to 0.5 times the blade passing frequency for other off-design points, while the blade passing one near the volute tongue is the dominant one of the pressure fluctuations at design point. The increase of flow rate reduces the pressure fluctuations amplitude. For cavitation cases, the blade loading of the middle streamline increases a bit during the initial stage, but, for serious cavitation, the blade loading near the blade inlet reduces to 0 and even negative values, and the serious cavitation bubbles block the blade channels, which results in a sharp drop in pump head. Under noncavitation condition, the predicted power related to the pressure in the impeller channels increases from the inlet to the exit, while, under different cavitation conditions at the design flow rate, these power-transformation distributions in the impeller channels show that these power conversions are affected by the available NPSHa and the corresponding work in leading regions of the blades increases increases gradually a bit, and then it increases sharply in the middle regions, but it decreases in the blade trailing regions and is greatly influenced by secondary flows.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 326
Author(s):  
Huiyan Zhang ◽  
Fan Meng ◽  
Yunhao Zheng ◽  
Yanjun Li

To reduce cavitation-induced pressure fluctuations in a mixed-flow pump under impeller inflow distortion, the dynamic pressure signal at different monitoring points of a mixed-flow pump with a dustpan-shaped inlet conduit under normal and critical cavitation conditions was collected using high-precision digital pressure sensors. Firstly, the nonuniformity of the impeller inflow caused by inlet conduit shape was characterized by the time–frequency-domain spectra and statistical characteristics of pressure fluctuation at four monitoring points (P4–P7) circumferentially distributed at the outlet of the inlet conduit. Then, the cavity distribution on the blade surface was captured by a stroboscope. Lastly, the characteristics of cavitation-induced pressure fluctuation were obtained by analyzing the time–frequency-domain spectra and statistical characteristic values of dynamic pressure signals at the impeller inlet (P1), guide vanes inlet (P2), and guide vanes outlet (P3). The results show that the flow distribution of impeller inflow is asymmetric. The pav values at P4 and P6 were the smallest and largest, respectively. Compared with normal conditions, the impeller inlet pressure is lower under critical cavitation conditions, which leads to low pav, pp-p and a main frequency amplitude at P1. In addition, the cavity covered the whole suction side under H = 13.6 m and 15.5 m, which led the pp-p and dominant frequency amplitude of pressure fluctuation at P2 and P3 under critical cavitation to be higher than that under normal conditions.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 126
Author(s):  
Houlin Liu ◽  
Ruichao Xia ◽  
Kai Wang ◽  
Yucheng Jing ◽  
Xianghui He

Experimental measurements to analyze the pressure fluctuation performance of a centrifugal pump with a vaned-diffuser, which its specific speed is 190. Results indicate that the main cause of pressure fluctuation is the rotor-stator interference at the impeller outlet. The head of the pump with vaned-diffuser at the design flow rate is 15.03 m, and the efficiency of the pump with a vaned-diffuser at the design flow rate reaches 71.47%. Pressure fluctuation decreases gradually with increasing distance from the impeller outlet. Along with the increase of the flow rate, amplitude of pressure fluctuation decreases. The amplitude of pressure fluctuation at the measuring points near the diffusion section of the pump body is larger than other measuring points. The variation tendency of pressure fluctuation at P1–P10 is the same, while there are wide frequency bands with different frequencies. The dominant frequency of pressure fluctuation is the blade passing frequency. The rotor-stator interference between the impeller and the vaned-diffuser gives rise to the main signal source of pressure fluctuation.


1991 ◽  
Author(s):  
Ronald D. Flack ◽  
Steven M. Miner ◽  
Ronald J. Beaudoin

Turbulence profiles were measured in a centrifugal pump with an impeller with backswept blades using a two directional laser velocimeter. Data presented includes radial, tangential, and cross product Reynolds stresses. Blade to blade profiles were measured at four circumferential positions and four radii within and one radius outside the four bladed impeller. The pump was tested in two configurations; with the impeller running centered within the volute, and with the impeller orbiting with a synchronous motion (ε/r2 = 0.016). Flow rates ranged from 40% to 106% of the design flow rate. Variation in profiles among the individual passages in the orbiting impeller were found. For several regions the turbulence was isotropic so that the cross product Reynolds stress was low. At low flow rates the highest cross product Reynolds stress was near the exit. At near design conditions the lowest cross product stress was near the exit, where uniform flow was also observed. Also, near the exit of the impeller the highest turbulence levels were seen near the tongue. For the design flow rate, inlet turbulence intensities were typically 9% and exit turbulence intensities were 6%. For 40% flow capacity the values increased to 18% and 19%, respectively. Large local turbulence intensities correlated with separated regions. The synchronous orbit did not increase the random turbulence, but did affect the turbulence in the individual channels in a systematic pattern.


1992 ◽  
Vol 114 (2) ◽  
pp. 350-358 ◽  
Author(s):  
R. D. Flack ◽  
S. M. Miner ◽  
R. J. Beaudoin

Turbulence profiles were measured in a centrifugal pump with an impeller with backswept blades using a two-directional laser velocimeter. Data presented include radial, tangential, and cross product Reynolds stresses. Blade-to-blade profiles were measured at four circumferential positions and four radii within and one radius outside the four-bladed impeller. The pump was tested in two configurations: with the impeller running centered within the volute, and with the impeller orbiting with a synchronous motion (ε/r2 = 0.016). Flow rates ranged from 40 to 106 percent of the design flow rate. Variation in profiles among the individual passages in the oribiting impeller were found. For several regions the turbulence was isotropic so that the cross product Reynolds stress was low. At low flow rates the highest cross product Reynolds stress was near the exit. At near-design conditions the lowest cross product stress was near the exit, where uniform flow was also observed. Also, near the exit of the impeller the highest turbulence levels were seen near the tongue. For the design flow rate, inlet turbulence intensities were typically 9 percent and exit turbulence intensities were 6 percent. For 40 percent flow capacity the values increased to 18 and 19 percent, respectively. Large local turbulence intensities correlated with separated regions. The synchronous orbit did not increase the random turbulence, but did affect the turbulence in the individual channels in a systematic pattern.


2012 ◽  
Vol 152-154 ◽  
pp. 935-939 ◽  
Author(s):  
Qiang Fu ◽  
Shou Qi Yuan ◽  
Rong Sheng Zhu

In order to study the rules of pressure fluctuation and the radial force under different positions in a centrifugal pump with low specific speed, and to find the relationship between each other, the three-dimensional ,unsteady Reynolds-averaged Navier-stokes equations with shear stress transport turbulent models were solved. The pressure fluctuation was obtained. The results showed that the pressure fluctuations were visible. The pressure fluctuations in the volute were relatively low at the design flow rate condition. The blade passing frequency dominates the pressure fluctuations, high frequency contents were found on the outlet of impeller but no high frequency information occured in casing. The radial force on the impeller was unsteady especially at the small flow rate.


Author(s):  
Francois G. Louw ◽  
Theodor W. von Backström ◽  
Sybrand J. van der Spuy

Large axial flow fans are used in forced draft air cooled heat exchangers (ACHEs). Previous studies have shown that adverse operating conditions cause certain sectors of the fan, or the fan as a whole to operate at very low flow rates, thereby reducing the cooling effectiveness of the ACHE. The present study is directed towards the experimental and numerical analyses of the flow in the vicinity of an axial flow fan during low flow rates. This is done to obtain the global flow structure up and downstream of the fan. A near-free-vortex fan, designed for specific application in ACHEs, is used for the investigation. Experimental fan testing was conducted in a British Standard 848, type A fan test facility, to obtain the fan characteristic. Both steady-state and time-dependent numerical simulations were performed, depending on the operating condition of the fan, using the Realizable k-ε turbulence model. Good agreement is found between the numerically and experimentally obtained fan characteristic data. Using data from the numerical simulations, the time and circumferentially averaged flow field is presented. At the design flow rate the downstream fan jet mainly moves in the axial and tangential direction, as expected for a free-vortex design criteria, with a small amount of radial flow that can be observed. As the flow rate through the fan is decreased, it is evident that the down-stream fan jet gradually shifts more diagonally outwards, and the region where reverse flow occur between the fan jet and the fan rotational axis increases. At very low flow rates the flow close to the tip reverses through the fan, producing a small recirculation zone as well as swirl at certain locations upstream of the fan.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Hiroshi Yokoyama ◽  
Katsutake Minowa ◽  
Kohei Orito ◽  
Masahito Nishikawara ◽  
Hideki Yanada

Abstract Small axial fans are used for cooling electronic equipment and are often installed in a casing with various slits. Direct aeroacoustic simulations and experiments were performed with different casing opening ratios to clarify the effects of the flow through the casing slits on the flow field and acoustic radiation around a small axial fan. Both the predicted and measured results show that aerodynamic performance deteriorates at and near the design flow rate and is higher at low flow rates by completely closing the casing slits compared with the fan in the casing with slits. The predicted flow field shows that the vortical structures in the tip vortices are spread by the suppression of flow through the slits at the design flow rate, leading to the intensification of turbulence in the blade wake. Moreover, the pressure fluctuations on the blade surface are intensified, which increases the aerodynamic sound pressure level. The suppression of the outflow of pressurized air through the downstream part of the slits enhances the aerodynamic performance at low flow rates. Also, the predicted surface streamline at the design flow rate shows that air flows along the blade tip for the fan with slits, whereas the flow toward the blade tip appears for the fan without slits. As a result, the pressure distributions on the blade and the torque exerted on the fan blade are affected by the opening ratio of slits.


Author(s):  
Chuhua Zhang ◽  
Yongmiao Miao ◽  
Chuangang Gu

The three-dimensional turbulent flow fields in a shrouded fan impeller with backswept discharge at three operating flow rates are numerically calculated with an unstructured grid method recently developed by the authors. Reynolds-averaged Navier-Stokes (N-S) equations and k-ε equations are solved through finite volume method with pressure correction algorithm. Numerical results are presented for detailed main and secondary flow velocity. The agreements of radial velocity component at different sections at design flow rate between computations and measurements are generally good. It can be observed that different flow rates have distinctive effects on flow patterns. At design flow rate, the flow is behaved as attached flow pattern and has a relatively smooth distribution for the main flow velocity. Above the design flow rate, a sudden drop and non-smooth distribution for the main flow velocity appear at the pressure-hub corner near the impeller inlet, however, the distribution of main flow velocity becomes smooth gradually downstream. Under the design flow rate, the jet-wake structure appears obviously within the impeller passage.


Sign in / Sign up

Export Citation Format

Share Document