scholarly journals Flaw Tolerance in a Viscoelastic Strip

2013 ◽  
Vol 80 (4) ◽  
Author(s):  
Lei Chen ◽  
Shaohua Chen ◽  
Huajian Gao

Load-bearing biological materials such as bone, teeth, and nacre have acquired some interesting mechanical properties through evolution, one of which is the tolerance of cracklike flaws incurred during tissue function, growth, repair, and remodeling. While numerous studies in the literature have addressed flaw tolerance in elastic structures, so far there has been little investigation of this issue in time-dependent, viscoelastic systems, in spite of its importance to biological materials. In this paper, we investigate flaw tolerance in a viscoelastic strip under tension and derive the conditions under which a pre-existing center crack, irrespective of its size, will not grow before the material fails under uniform rupture. The analysis is based on the Griffith and cohesive zone models of crack growth in a viscoelastic material, taking into account the effects of the loading rate along with the fracture energy, Young’s modulus, and theoretical strength of material.

2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Seung Yub Baek ◽  
Kyungmok Kim

A model for describing frictional aging of silica is developed at the nanoscale. A cohesive zone is applied to the contact surface between self-mated silica materials. Strengthening of interfacial bonding during frictional aging is reproduced by increasing fracture energy of a cohesive zone. Fracture energy is expressed as a function of hold time between self-mated silica materials. Implicit finite element simulation is employed, and simulation results are compared with experimental ones found in the literature. Calculated friction evolutions with various hold times are found to be in good agreement with experimental ones. Dependence of mesh size and cohesive thickness is identified for obtaining accurate simulation result.


2020 ◽  
Vol 10 (6) ◽  
pp. 2175 ◽  
Author(s):  
Tae Young Ko ◽  
Sean Seungwon Lee

Rock fractures in geological conditions are caused not only by applied stress, but also by stress corrosion. Stress corrosion is an environmentally activated chemical process, associated with the fluid-assisted crack growth. Crack growth due to stress corrosion is related to the time-dependent behaviours of rocks and is a crucial factor in determining the stability of underground structures over the long period of time. In this study, constant stress-rate tests including Brazilian tension and three-point flexural tests for the tensile strength, short-beam compression and single-shear tests for the in-plane shear strength, and a torsion test of rectangular section specimens and a circumferentially notched cylindrical specimen test for the out-of-plane shear strength were conducted at a different loading rate from 0.01 to 10 MPa/s using Coconino sandstone. The results show that the rock strength was proportional to the 1/(n+1)th power of the loading rate, where the parameter n indicates the stress corrosion index. The stress corrosion index (n) ranged from 34 to 38, with an average value of 36. The stress corrosion indices (n) were similar, irrespective of the loading configuration and specimen geometry. The stress corrosion index (n) can, therefore, be regarded as a material constant of rocks.


1997 ◽  
Vol 473 ◽  
Author(s):  
Michael Lane ◽  
Robert Ware ◽  
Steven Voss ◽  
Qing Ma ◽  
Harry Fujimoto ◽  
...  

ABSTRACTProgressive (or time dependent) debonding of interfaces poses serious problems in interconnect structures involving multilayer thin films stacks. The existence of such subcriticai debonding associated with environmentally assisted crack-growth processes is examined for a TiN/SiO2 interface commonly encountered in interconnect structures. The rate of debond extension is found to be sensitive to the mechanical driving force as well as the interface morphology, chemistry, and yielding of adjacent ductile layers. In order to investigate the effect of interconnect structure, particularly the effect of an adjacent ductile Al-Cu layer, on subcriticai debonding along the TiN/SiO2 interface, a set of samples was prepared with Al-Cu layer thicknesses varying from 0.2–4.0 μm. All other processing conditions remained the same over the entire sample run. Results showed that for a given crack growth velocity, the debond driving force scaled with Al-Cu layer thickness. Normalizing the data by the critical adhesion energy allowed a universal subcriticai debond rate curve to be derived.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 80
Author(s):  
Bo Zhang ◽  
Sizhi Zeng ◽  
Fenghua Tang ◽  
Shujun Hu ◽  
Qiang Zhou ◽  
...  

As a stimulus-sensitive material, the difference in composition, fabrication process, and influencing factors will have a great effect on the mechanical properties of a superelastic Ni-Ti shape memory alloy (SMA) wire, so the seismic performance of the self-centering steel brace with SMA wires may not be accurately obtained. In this paper, the cyclic tensile tests of a kind of SMA wire with a 1 mm diameter and special element composition were tested under multi-working conditions, which were pretreated by first tensioning to the 0.06 strain amplitude for 40 cycles, so the mechanical properties of the pretreated SMA wires can be simulated in detail. The accuracy of the numerical results with the improved model of Graesser’s theory was verified by a comparison to the experimental results. The experimental results show that the number of cycles has no significant effect on the mechanical properties of SMA wires after a certain number of cyclic tensile training. With the loading rate increasing, the pinch effect of the hysteresis curves will be enlarged, while the effective elastic modulus and slope of the transformation stresses in the process of loading and unloading are also increased, and the maximum energy dissipation capacity of the SMA wires appears at a loading rate of 0.675 mm/s. Moreover, with the initial strain increasing, the slope of the transformation stresses in the process of loading is increased, while the effective elastic modulus and slope of the transformation stresses in the process of unloading are decreased, and the maximum energy dissipation capacity appears at the initial strain of 0.0075. In addition, a good agreement between the test and numerical results is obtained by comparing with the hysteresis curves and energy dissipation values, so the numerical model is useful to predict the stress–strain relations at different stages. The test and numerical results will also provide a basis for the design of corresponding self-centering steel dampers.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Rajeswara R. Resapu ◽  
Roger D. Bradshaw

Abstract In-vitro mechanical indentation experimentation is performed on bulk liver tissue of lamb to characterize its nonlinear material behaviour. The material response is characterized by a visco-hyperelastic material model by the use of 2-dimensional inverse finite element (FE) analysis. The time-dependent behaviour is characterized by the viscoelastic model represented by a 4-parameter Prony series, whereas the large deformations are modelled using the hyperelastic Neo-Hookean model. The shear response described by the initial and final shear moduli and the corresponding Prony series parameters are optimized using ANSYS with the Root Mean Square (RMS) error being the objective function. Optimized material properties are validated using experimental results obtained under different loading histories. To study the efficacy of a 2D model, a three dimensional (3D) model of the specimen is developed using Micro-CT of the specimen. The initial elastic modulus of the lamb liver obtained was found to 13.5 kPa for 5% indentation depth at a loading rate of 1 mm/sec for 1-cycle. These properties are able to predict the response at 8.33% depth and a loading rate of 5 mm/sec at multiple cycles with reasonable accuracy. Article highlights The visco-hyperelastic model accurately models the large displacement as well as the time-dependent behaviour of the bulk liver tissue. Mapped meshing of the 3D FE model saves computational time and captures localized displacement in an accurate manner. The 2D axisymmetric model while predicting the force response of the bulk tissue, cannot predict the localized deformations.


Sign in / Sign up

Export Citation Format

Share Document