Effect of Bending Rigidity of Stringers Upon Stress Distribution in Reinforced Monocoque Cylinder Under Concentrated Transverse Loads

1948 ◽  
Vol 15 (1) ◽  
pp. 30-36
Author(s):  
Robert S. Levy

Abstract Least-work analysis of stress distribution in a reinforced circular monocoque cylinder is extended to determine the effect of bending resistant stringers located at the points of application of concentrated transverse loads. Calculations for a numerical example, with applied loads diametrically opposed, indicate that neglect of stringer bending rigidity results in calculated maximum shear stresses approximately 20 per cent conservative in the fields of load application and 50 per cent unsafe in an intermediate field. Further calculations indicate that the bending rigidity of the stringer has less effect when all loads are applied at the same circumferential location. Comparison of shear stresses, calculated by the present method with strain-rosette readings, indicate good agreement.

2013 ◽  
Vol 10 (03) ◽  
pp. 1350039 ◽  
Author(s):  
Y. H. XIAO ◽  
D. A. HU ◽  
X. HAN ◽  
G. YANG ◽  
S. Y. LONG

An axisymmetric smoothed particle hydrodynamics (ASPH) with contact algorithm is presented to simulate the normal perforation of aluminum plates. Traditional ASPH considering contact implicitly by conservation equations has the problem of virtual tensile stresses and shear stresses for perforation simulation. To overcome the problem, a particle-to-particle contact algorithm is employed to treat contact interfaces explicitly in the present method. An artificial stress method is extended for the method to remove tensile instability. The present method is firstly validated by three test cases. Then, it is used to simulate the normal perforation of aluminum plates with ogive-nose steel projectiles. Numerical simulation results show that the method predicted residual velocities of projectiles in good agreement with the experimental data.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 596
Author(s):  
Babak Lashkar-Ara ◽  
Niloofar Kalantari ◽  
Zohreh Sheikh Khozani ◽  
Amir Mosavi

One of the most important subjects of hydraulic engineering is the reliable estimation of the transverse distribution in the rectangular channel of bed and wall shear stresses. This study makes use of the Tsallis entropy, genetic programming (GP) and adaptive neuro-fuzzy inference system (ANFIS) methods to assess the shear stress distribution (SSD) in the rectangular channel. To evaluate the results of the Tsallis entropy, GP and ANFIS models, laboratory observations were used in which shear stress was measured using an optimized Preston tube. This is then used to measure the SSD in various aspect ratios in the rectangular channel. To investigate the shear stress percentage, 10 data series with a total of 112 different data for were used. The results of the sensitivity analysis show that the most influential parameter for the SSD in smooth rectangular channel is the dimensionless parameter B/H, Where the transverse coordinate is B, and the flow depth is H. With the parameters (b/B), (B/H) for the bed and (z/H), (B/H) for the wall as inputs, the modeling of the GP was better than the other one. Based on the analysis, it can be concluded that the use of GP and ANFIS algorithms is more effective in estimating shear stress in smooth rectangular channels than the Tsallis entropy-based equations.


2019 ◽  
Vol 116 (10) ◽  
pp. 4012-4017 ◽  
Author(s):  
Yiping Cao ◽  
Sreenath Bolisetty ◽  
Gianna Wolfisberg ◽  
Jozef Adamcik ◽  
Raffaele Mezzenga

Amyloid fibrils have evolved from purely pathological materials implicated in neurodegenerative diseases to efficient templates for last-generation functional materials and nanotechnologies. Due to their high intrinsic stiffness and extreme aspect ratio, amyloid fibril hydrogels can serve as ideal building blocks for material design and synthesis. Yet, in these gels, stiffness is generally not paired by toughness, and their fragile nature hinders significantly their widespread application. Here we introduce an amyloid-assisted biosilicification process, which leads to the formation of silicified nanofibrils (fibril–silica core–shell nanofilaments) with stiffness up to and beyond ∼20 GPa, approaching the Young’s moduli of many metal alloys and inorganic materials. The silica shell endows the silicified fibrils with large bending rigidity, reflected in hydrogels with elasticity three orders of magnitude beyond conventional amyloid fibril hydrogels. A constitutive theoretical model is proposed that, despite its simplicity, quantitatively interprets the nonmonotonic dependence of the gel elasticity upon the filaments bundling promoted by shear stresses. The application of these hybrid silica–amyloid hydrogels is demonstrated on the fabrication of mechanically stable aerogels generated via sequential solvent exchange, supercriticalCO2removal, and calcination of the amyloid core, leading to aerogels of specific surface area as high as 993m2/g, among the highest values ever reported for aerogels. We finally show that the scope of amyloid hydrogels can be expanded considerably by generating double networks of amyloid and hydrophilic polymers, which combine excellent stiffness and toughness beyond those of each of the constitutive individual networks.


Author(s):  
Y. Ait Ferhat ◽  
A. Boulenouar ◽  
N. Benamara ◽  
L. Benabou

The main objective of this work is to present a numerical modeling of mixed-mode fracture in isotropic functionally graded materials (FGMs), under mechanical and thermal loading conditions. In this paper, the displacement-based method, termed the generalized displacement correlation (GDC) method, is investigated for estimating stress intensity factor (SIF). Using the ANSYS Parametric Design Language (APDL), the continuous variations of the material properties are incorporated by specified parameters at the centroid of each element. This paper presents various numerical examples in which the accuracy of the present method is verified. Comparisons have been made between the SIFs predicted by the GDC method and the available reference solutions in the current literature. A good agreement is achieved between the results of the GDC method and the reference solutions.


2013 ◽  
Vol 12 (06) ◽  
pp. 1350057 ◽  
Author(s):  
HSIU-YA TASI ◽  
CHAOYUAN ZHU

Dielectric constants and Seebeck coefficients for semiconductor materials are studied by thermodynamic method plus ab initio quantum density functional theory (DFT). A single molecule which is formed in semiconductor material is treated in gas phase with molecular boundary condition and then electronic polarizability is directly calculated through Mulliken and atomic polar tensor (APT) density charges in the presence of the external electric field. This electronic polarizability can be converted to dielectric constant for solid material through the Clausius–Mossotti formula. Seebeck coefficient is first simulated in gas phase by thermodynamic method and then its value divided by its dielectric constant is regarded as Seebeck coefficient for solid materials. Furthermore, unit cell of semiconductor material is calculated with periodic boundary condition and its solid structure properties such as lattice constant and band gap are obtained. In this way, proper DFT function and basis set are selected to simulate electronic polarizability directly and Seebeck coefficient through chemical potential. Three semiconductor materials Mg 2 Si , β- FeSi 2 and SiGe are extensively tested by DFT method with B3LYP, BLYP and M05 functionals, and dielectric constants simulated by the present method are in good agreement with experimental values. Seebeck coefficients simulated by the present method are in reasonable good agreement with experiments and temperature dependence of Seebeck coefficients basically follows experimental results as well. The present method works much better than the conventional energy band structure theory for Seebeck coefficients of three semiconductors mentioned above. Simulation with periodic boundary condition can be generalized directly to treat with doped semiconductor in near future.


2000 ◽  
Vol 44 (01) ◽  
pp. 14-32
Author(s):  
Ming-Chung Fang

A three-dimensional method to analyze the motions of a ship running in waves is presented, including the effects of the steady-flow potential. Basically, the general formulations are based on the source distribution technique by which the ship hull surface is regarded as the assembly of many panels. The present study includes three algorithms for treating the corresponding Green function:the Hess & Smith algorithm for the part of simple source I/r,the complex plane contour integral of the Shen & Farell algorithm for the double integral of steady flow, andthe series expansions of the Telste & Noblesse algorithm for the Cauchy principal value integral of unsteady flow. The study reveals that the effect of steady flow on ship motions is generally small, but it still cannot be neglected in some cases, especially for the ship running in oblique waves. The effect also depends on the fore-aft configuration of the ship. The results predicted by the present method are found to be in fairly good agreement with existing experiments and other theories.


2018 ◽  
Vol 147 ◽  
pp. 01005
Author(s):  
Jonie Tanijaya

This study is carried out to evaluate the potential of three hybrid T-beams with web openings theoretical shear stresses distribution. The shear stresses at the opening edges were plotted at the working stage, yielding stage and collapse stage for these three tested beams. The available experimental results from the previous research was compared to the finite element results as well as the developed analytical. The shear stress distribution at the middle of the top and bottom chords of the opening in pure bending region are zero. At the upper and lower corners of the opening occurs the maximum shear stresses. The maximum shear stress occurs at the right lower corner chord at the high moment edge and at the left upper corner chord at the low moment edge in beams with openings at high shear and high flexural – shear region. Furthermore, an extensive parametric study is performed on these beams to find the distributing ratio of the shear force between the opening chords. The shear force at an opening in hybrid R/C T-beam is carried by the top and bottom chords of the opening according to the area – moment of inertia root ratio with the correction factor 0.70.


1982 ◽  
Vol 17 (3) ◽  
pp. 123-132 ◽  
Author(s):  
K D Al-Faddagh ◽  
R T Fenner ◽  
G A Webster

The paper describes a procedure, based on a finite element method, for calculating directly the steady-state stress distribution in circumferentially notched bars subjected to creep without the need for obtaining solutions at intermediate time intervals. Good agreement is obtained with relevant approximate plasticity solutions and with numerical calculations which approach the steady-state over a period of time from the initial elastic stress distribution. Also, the procedure is equally applicable to primary, secondary, and tertiary creep, provided the variables of stress and time are separable in the creep law. Results obtained for a range of notch geometries and values of the stress index, n, are reported. It is found for each profile that a region of approximately constant effective stress, σ, independent of n, is obtained which can be used to characterise the overall behaviour of the notch throat region when a steady-state is reached sufficiently early in life. An approximate method for estimating the maximum equivalent steady-state stress across the notch throat is also presented which does not require a computer solution.


Sign in / Sign up

Export Citation Format

Share Document