Defect-Induced Mechanical Mode Splitting in Carbon Nanotube Resonators

2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Ajit K. Vallabhaneni ◽  
Jeffrey F. Rhoads ◽  
Jayathi Y. Murthy ◽  
Xiulin Ruan

This work examines the impact of defects on the resonant response of single-wall carbon nanotube (CNT) resonators using classical molecular dynamics (MD) simulations. The work demonstrates that the presence of defects in CNTs leads to appreciable resonant mode splitting. A dimensionless parameter has been introduced to quantify this phenomenon. It is observed that increasing the degree of asymmetry in the system generally increases the magnitude of splitting. Given the centrality of single-peak Lorentzian frequency responses in the current device design paradigm, which is utilized in applications such as resonant mass sensing, the non-Lorentzian response characteristics of imperfect devices could present both opportunities and challenges in the future design and development of resonant nanosystems.

2019 ◽  
Vol 25 (7) ◽  
pp. 750-773 ◽  
Author(s):  
Pabitra Narayan Samanta ◽  
Supratik Kar ◽  
Jerzy Leszczynski

The rapid advancement of computer architectures and development of mathematical algorithms offer a unique opportunity to leverage the simulation of macromolecular systems at physiologically relevant timescales. Herein, we discuss the impact of diverse structure-based and ligand-based molecular modeling techniques in designing potent and selective antagonists against each adenosine receptor (AR) subtype that constitutes multitude of drug targets. The efficiency and robustness of high-throughput empirical scoring function-based approaches for hit discovery and lead optimization in the AR family are assessed with the help of illustrative examples that have led to nanomolar to sub-micromolar inhibition activities. Recent progress in computer-aided drug discovery through homology modeling, quantitative structure-activity relation, pharmacophore models, and molecular docking coupled with more accurate free energy calculation methods are reported and critically analyzed within the framework of structure-based virtual screening of AR antagonists. Later, the potency and applicability of integrated molecular dynamics (MD) methods are addressed in the context of diligent inspection of intricated AR-antagonist binding processes. MD simulations are exposed to be competent for studying the role of the membrane as well as the receptor flexibility toward the precise evaluation of the biological activities of antagonistbound AR complexes such as ligand binding modes, inhibition affinity, and associated thermodynamic and kinetic parameters.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arunabh Choudhury ◽  
Taj Mohammad ◽  
Nikhil Samarth ◽  
Afzal Hussain ◽  
Md. Tabish Rehman ◽  
...  

AbstractConserved telomere maintenance component 1 (CTC1) is an important component of the CST (CTC1-STN1-TEN1) complex, involved in maintaining the stability of telomeric DNA. Several non-synonymous single-nucleotide polymorphisms (nsSNPs) in CTC1 have been reported to cause Coats plus syndrome and Dyskeratosis congenital diseases. Here, we have performed sequence and structure analyses of nsSNPs of CTC1 using state-of-the-art computational methods. The structure-based study focuses on the C-terminal OB-fold region of CTC1. There are 11 pathogenic mutations identified, and detailed structural analyses were performed. These mutations cause a significant disruption of noncovalent interactions, which may be a possible reason for CTC1 instability and consequent diseases. To see the impact of such mutations on the protein conformation, all-atom molecular dynamics (MD) simulations of CTC1-wild-type (WT) and two of the selected mutations, R806C and R806L for 200 ns, were carried out. A significant conformational change in the structure of the R806C mutant was observed. This study provides a valuable direction to understand the molecular basis of CTC1 dysfunction in disease progression, including Coats plus syndrome.


2004 ◽  
Vol 858 ◽  
Author(s):  
Jian Chen ◽  
Rajagopal Ramasubramaniam ◽  
Haiying Liu

ABSTRACTThe understanding of the conformational interaction between conjugated polymers and carbon nanotubes in solution is essential to develop the applications of carbon nanotubes, particularly conjugated polymer-carbon nanotube hybrid materials. The visible absorption spectroscopic study shows that curved carbon nanotube surfaces can induce the planarization of individual conjugated polymers such as poly(p-phenyleneethynylene)s and poly(3-alkylthiophene)s in solution. The impact of nanotube surface quality on the interaction between carbon nanotubes and conjugated polymers is investigated.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Anna Aviñó ◽  
Elena Cubero ◽  
Raimundo Gargallo ◽  
Carlos González ◽  
Modesto Orozco ◽  
...  

The structure of G,T-parallel-stranded duplexes of DNA carrying similar amounts of adenine and guanine residues is studied by means of molecular dynamics (MD) simulations and UV- and CD spectroscopies. In addition the impact of the substitution of adenine by 8-aminoadenine and guanine by 8-aminoguanine is analyzed. The presence of 8-aminoadenine and 8-aminoguanine stabilizes the parallel duplex structure. Binding of these oligonucleotides to their target polypyrimidine sequences to form the corresponding G,T-parallel triplex was not observed. Instead, when unmodified parallel-stranded duplexes were mixed with their polypyrimidine target, an interstrand Watson-Crick duplex was formed. As predicted by theoretical calculations parallel-stranded duplexes carrying 8-aminopurines did not bind to their target. The preference for the parallel-duplex over the Watson-Crick antiparallel duplex is attributed to the strong stabilization of the parallel duplex produced by the 8-aminopurines. Theoretical studies show that the isomorphism of the triads is crucial for the stability of the parallel triplex.


2019 ◽  
Vol 18 (01) ◽  
pp. 1 ◽  
Author(s):  
Iacopo Mochi ◽  
Marina Y. Timmermans ◽  
Emily E. Gallagher ◽  
Marina Mariano ◽  
Ivan Pollentier ◽  
...  

2021 ◽  
Vol 2101 (1) ◽  
pp. 012087
Author(s):  
Peng Hao ◽  
Lin’an Li ◽  
Jianxun Du

Abstract In order to research the impact mechanical response characteristics of the bio-inspired composite sandwich structure, the hemispherical impactor is preloaded with different energy to impact bio-inspired and conventional composite sandwich structure, the stress distribution and dynamic response characteristics of composite sandwich structure under impact load are studied. The results show that the main damage of the upper panel is fiber shear fracture, while crushing fracture for the core, and the main damage of the lower panel is fiber tensile tearing under different impact load. The bio-inspired composite sandwich structure shows better impact resistance in terms of damage depth and maximum impact load under the same impact energy. From the perspective of energy consumption, the bio-inspired structure absorbed more energy than conventional structure under high energy impact.


2015 ◽  
Vol 817 ◽  
pp. 797-802 ◽  
Author(s):  
Cai Jiang ◽  
Jian Wei Zhang ◽  
Shao Feng Lin ◽  
Su Ju ◽  
Da Zhi Jiang

Molecular dynamics (MD) simulations on three single walled carbon nanotube (SWCNT) reinforced epoxy resin composites were conducted to study the influence of SWCNT type on the glass transition temperature (Tg) of the composites. The composite matrix is cross-linked epoxy resin based on the epoxy monomers bisphenol A diglycidyl ether (DGEBA) cured by diaminodiphenylmethane (DDM). MD simulations of NPT (constant number of particles, constant pressure and constant temperature) dynamics were carried out to obtain density as a function of temperature for each composite system. The Tg was determined as the temperature corresponding to the discontinuity of plot slopes of the densityvsthe temperature. In order to understand the motion of polymer chain segments above and below the Tg, various energy components and the MSD at various temperatures of the composites were investigated and their roles played in the glass transition process were analyzed. The results show that the Tg of the composites increases with increasing aspect ratio of the embedded SWCNT


1999 ◽  
Vol 43 (04) ◽  
pp. 229-240
Author(s):  
H. R. Riggs ◽  
R. C. Ertekin

One design for a mobile offshore base is to link serially as many as five large semisubmersibles to form a platform long enough to support large aircraft. This paper investigates the linear, wave-induced response characteristics of serially-connected semisubmersibles. A major motivation of this study is to understand more completely the forces required to link semisubmersible modules. The impact of connector strategy and damping on the response, especially the connector forces, is investigated, and the response "modes" which contribute to the connector forces are evaluated in detail. It is shown that the response characteristics can be impacted significantly by the connection strategy, and that connector damping can be a significant source of energy loss when compared to radiation damping. The wet natural frequencies and normal modes are also determined and used to explain the response characteristics of different connection strategies. Although the analyses are based on a specific semisubmersible design, the results provide insight on how other systems of connected semisubmersibles would likely behave.


2014 ◽  
pp. 466-477
Author(s):  
Nabila Tahreen ◽  
K. M. Masud

In recent years, polymer/carbon nanotube composites have attracted increased attention because the polymer properties have significantly improved. In this paper, a single walled carbon nanotube (SWCNT) is used to reinforce polystyrene matrix. Molecular dynamics (MD) simulations are used to study two periodic systems - a long CNT-reinforced polystyrene composite and amorphous polystyrene matrix itself. The axial and transverse elastic moduli of the amorphous polystyrene matrix and nanocomposites are evaluated using constant-strain energy minimization method. The results from MD simulations are compared with corresponding rule-of-mixture predictions. The simulation results show that CNTs significantly improve the stiffness of polystyrene/CNT composite, especially in the longitudinal direction of the nanotube. Polystyrene posses a strong attractive interaction with the surface of the SWCNT and therefore play an important role in providing effective adhesion. The conventional rule-of-mixture predicts a smaller value than MD simulation where there are strong interfacial interactions. Here the authors report a study on the interfacial characteristics of a CNT-PS composite system through MD simulations and continuum mechanics.


Sign in / Sign up

Export Citation Format

Share Document