Numerical Simulation of the Breakup of Elliptical Liquid Jet in Still Air

2013 ◽  
Vol 135 (7) ◽  
Author(s):  
Ehsan Farvardin ◽  
Ali Dolatabadi

The numerical simulation of liquid jets ejecting from a set of elliptical orifices with different aspect ratios between 1 (circular) and 3.85 is performed for several Weber numbers, ranging from 15 to 330. The axis-switching phenomenon and breakup length of the jets are characterized by means of a volume of fluid (VOF) method, together with a dynamic mesh refinement model. This three-dimensional simulation is compared with a recent experimental work and the results agree well. It is concluded that for Weber numbers ranging from 15 to 100, by increasing the Weber number, the breakup length of the liquid jet increases, reaches a peak, and then decreases suddenly.

Author(s):  
Ehsan Farvardin ◽  
Ali Dolatabadi

Numerical simulation of liquid jets ejecting from a set of elliptical jets with different aspect ratios between 1 (circular) to 3.85 is performed for several Weber numbers ranging 15 to 330. The axis-switching phenomenon and breakup length of the jets are characterized by means of a Volume of Fluid (VOF) method together with a dynamic mesh refinement model. This three dimensional simulation is compared with a recent experimental work and the results agree well. It is concluded that at Weber numbers less than 100, the breakup length of the liquid jet increases, reaches a peak and then decreases suddenly.


Author(s):  
Amin Jaberi ◽  
Mehran Tadjfar

The instability characteristics and flow structures of water jets injected from rectangular and elliptical nozzles with aspect ratios varying from 2 to 6 were experimentally studied and compared. Shadowgraph technique was employed for flow visualization, and structures on the liquid jet surface were captured using high speed photography. It was found that disturbances originating from the nozzle geometry initially perturbed the liquid column, and then, at high jet velocities, disturbances generated within the flow dominated the jet surface. It was also found that rectangular nozzles introduced more disturbances into the flow than the elliptical ones. The characteristic parameters of axis-switching phenomenon including wavelength, frequency, and amplitude were measured and compared. Axis-switching wavelength was found to increase linearly with Weber number. Also, the wavelengths of rectangular jets were longer than the elliptical jets. Further, the frequency of axis-switching was shown to be reduced with increase of both Weber number and aspect ratio. It was observed that the axis-switching amplitude increased monotonically, reached a peak, and then decreased gradually. It was also found that the axis-switching amplitude varied with Weber number. At lower values of Weber number, the rectangular nozzles had higher amplitude than the elliptical nozzles. However, at higher values of Weber number, this relation was reversed, and the elliptical nozzles had the higher axis-switching amplitudes. This reversal Weber number decreased with the orifice aspect ratio. The reversal Weber number for aspect ratio of 4 was about 289, and it had decreased to 144 for the aspect ratio of 6.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yao-zhi Zhou ◽  
Feng Xiao ◽  
Qing-lian Li ◽  
Chen-yang Li

The study of elliptical liquid jets in supersonic flow in a Mach 2.0 is performed numerically. The primary breakup process of the elliptical liquid jet is simulated for a Weber number 223, liquid/gas flux momentum 4.0. The aspect ratios of elliptical geometries are set to be 0.25, 0.5, 1, 2, and 5. The results show a remarkable difference in liquid jet disintegration morphology at different aspect ratios. Under supersonic crossflow conditions, the elliptical liquid jet shows more breakup characteristics than the round liquid jet. As the aspect ratio grows, the penetration depth decreases. The elliptical liquid jet with AR=0.25 has the largest penetration depth in all cases. Moreover, the round jet has a maximum spreading angle of 50.2°. The changing trends of the column breakup length both x direction and y direction are similar. The elliptical jet at a lower aspect ratio has a shorter breakup length due to the narrower windward area. The liquid jet has a pair of larger horseshoe vortex structure and a wider wake region at a higher aspect ratio. Two pairs of reversal vortex pairs with obvious characteristics can be observed in all the simulations.


Author(s):  
T. M. Liou ◽  
L. Chen

A numerical study of the mixing and combustion characteristics of an axial jet issued from rectangular injectors of different aspect ratios (3 and 1/3) in a three-dimensional side-dump combustor is presented. The Reynolds number based on the bulk mean velocity and combustor duct height was 5.9×104 and the momentum ratio of the axial-fuel jet to the side-air jets was 0.2. A two equation k-ε turbulence model incorporating with a two-step finite-rate combustion model was adopted to simulate the nonreacting and reacting flows in a side-dump combustor. The computed nonreacting flow pattern was verified by the available experimental data. A comparison between the reacting and nonreacting flow patterns was made. The axis switching phenomenon previously observed for the unconfined or confined noncircular jets was examined in detail for the present side-dump combustor. It was found that the axis switching phenomenon was incomplete and that the aspect ratio had weak effects on the turbulent mixing and combustion in the ducted rocket combustor under the investigated conditions.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Yakang Xia ◽  
Lyes Khezzar ◽  
Shrinivas Bojanampati ◽  
Arman Molki

Flow visualization experiments are carried out to study the flow regimes and breakup length of the water sheet generated by two impinging liquid jets from an atomizer made of two identical tubes 0.686 mm in diameter. These experiments cover liquid jet Reynolds numbers based on the pipe diameter in the range of 1541 to 5394. The effects of the jet velocities and impingement angle between the two jets on the breakup performance are studied. Four spray patterns are recognized, which are presheet formation, smooth sheet, ruffled sheet, and open-rim sheet regimes. Water sheet breakup length is found to be consistent with previous experimental and theoretical results in the lower Weber number (based on water jet diameter and velocity) range. In the relatively high Weber number range, the breakup length tends to a constant value with increasing Weber number, and some discrepancies between experimental and theoretical predictions do exist. Measured water sheet area increases with increasing liquid jet Reynolds numbers and impingement angle within the range of the current study.


2007 ◽  
Vol 339 ◽  
pp. 377-381
Author(s):  
Xiao Quan Zhang ◽  
L. Tian

Micro Air Vehicles (MAVs) are catching more and more attentions for their broad application in civilian and military fields. Since the theories on the aerodynamics of low Reynolds number are not maturely presented and the wind-tunnel experiments cost long periods and great expenses. The numerical simulation based on computational fluid dynamics (CFD) is a good method to choose. Through three-dimensional simulation of the wings, the aerodynamic characteristics of the flows around MAVs can be easily obtained. The tip vortices produced around low-Reynolds-number and low-aspect-ratio wings can increase the lift and stall angles. The result of numerical simulation can be used as references of theory analysis and wind-tunnel experiments.


1999 ◽  
Vol 121 (1) ◽  
pp. 50-56 ◽  
Author(s):  
I. Sezai ◽  
A. A. Mohamad

The flow and heat transfer characteristics of impinging laminar jets issuing from rectangular slots of different aspect ratios have been investigated numerically through the solution of three-dimensional Navier-Stokes and energy equations in steady state. The three-dimensional simulation reveals the existence of pronounced streamwise velocity off-center peaks near the impingement plate. Furthermore, the effect of these off-center velocity peaks on the Nusselt number distribution is also investigated. Interesting three-dimensional flow structures are detected which cannot be predicted by two-dimensional simulations.


Author(s):  
Fabian Denner ◽  
Fabien Evrard ◽  
Alfonso Arturo Castrejón-Pita ◽  
José Rafael Castrejón-Pita ◽  
Berend van Wachem

AbstractThe evolution of the capillary breakup of a liquid jet under large excitation amplitudes in a parameter regime relevant to inkjet printing is analysed using three-dimensional numerical simulations. The results exhibit a reversal of the breakup length of the jet occurring when the velocity scales associated with the excitation of the jet and surface tension are comparable, and an inversion of the breakup from front-pinching to back-pinching at sufficiently large excitation amplitudes. Both phenomena are shown to be associated with the formation of vortex rings and a local flow obstruction inside the jet, which modify the evolution of the jet by locally reducing or even reversing the growth of the capillary instability. Hence, this study provides a mechanism for the well-known breakup reversal and breakup inversion, which are both prominent phenomena in inkjet printing. An empirical similarity model for the reversal breakup length is proposed, which is shown to be valid throughout the considered range of characteristic parameters. Hence, even though the fluid dynamics observed in capillary jet breakup with large excitation amplitudes are complex, the presented findings allow an accurate prediction of the behaviour of jets in many practically relevant situations, especially continuous inkjet printing.


Sign in / Sign up

Export Citation Format

Share Document