On Measuring Engineering Risk Attitudes1

2013 ◽  
Vol 135 (12) ◽  
Author(s):  
Douglas L. Van Bossuyt ◽  
Andy Dong ◽  
Irem Y. Tumer ◽  
Lucila Carvalho

Risk management is a critical part of engineering practice in industry. Yet, the attitudes of engineers toward risk remain unknown and are not measured. This paper presents the development of a psychometric scale, the engineering-domain-specific risk-taking (E-DOSPERT) test, to measure engineers' risk aversion and risk seeking attitudes. Consistent with a similar psychometric scale to assess general risk attitudes, engineering risk attitude is not single domain and is not consistent across domains. Engineers have different risk attitudes toward five identified domains of engineering risk: processes, procedures and practices; engineering ethics; training; product functionality and design; and legal issues. Psychometric risk profiling with E-DOSPERT provides companies a standard to assess domain-specific engineering risk attitude within organizations and across organizations. It provides engineering educators a standard to assess the understanding of engineering students to the types of risks they would encounter in professional practice and their personal attitude toward responding to those risks. Appropriate interventions can then be implemented to shape risk attitudes as appropriate. Risk-based design decisions can also be shaped by a better understanding of engineer and customer risk attitude. Understanding engineers' risk attitudes is crucial in interpreting how individual engineers will respond to risk in their engineering activities and the numerous design decisions they make across the various domains of engineering risk found in professional practice.

Author(s):  
Douglas Van Bossuyt ◽  
Chris Hoyle ◽  
Irem Y. Tumer ◽  
Andy Dong ◽  
Toni Doolen ◽  
...  

Design projects within large engineering organizations involve numerous uncertainties that can lead to unacceptably high levels of risk. Practicing designers recognize the existence of risk and commonly are aware of events that raise risk levels. However, a disconnect exists between past project performance and current project execution that limits decision-making. This disconnect is primarily due to a lack of quantitative models that can be used for rational decision-making. Methods and tools used to make decisions in risk-informed design generally use an expected value approach. Research in the psychology domain has shown that decision-makers and stakeholders have domain-specific risk attitudes that often have variations between individuals and between companies. Risk methods used in engineering such as Failure Modes and Effects Analysis (FMEA), Fault Tree Analysis (FTA), and others are often ill-equipped to help stakeholders make decisions based upon risk-tolerant or risk-averse decision-making conditions. This paper focuses on the specific issue of helping stakeholders make decisions under risk-tolerant or risk-averse decision-making conditions and presents a novel method of translating engineering risk data from the domain of expected value into a domain corrected for risk attitude. This is done by using risk utility functions derived from the Engineering-Domain-Specific Risk-Taking (E-DOSPERT) test. This method allows decisions to be made based upon data that is risk attitude corrected. Further, the method uses an aspirational measure of risk attitude as opposed to existing lottery methods of generating utility functions that are based upon past performance. An illustrative test case using a simplified space mission designed in a collaborative design center environment is included. The method is shown to change risk-informed decisions in certain situations where a risk-tolerant or risk-averse decision-maker would likely choose differently than the dictates of the expected value approach.


2002 ◽  
Vol 11 (2) ◽  
pp. 38-44 ◽  
Author(s):  
Stuart R. Palmer ◽  
Sharyn L. Bray

The literature suggests that many commencing engineering students do not have an accurate understanding of the nature of professional practice in their chosen career. Many of the methods for exposing students to professional practice are impractical for large classes of commencing students. An assessment activity involving students collecting job advertisements for professional engineering positions and analysing them for required skills and knowledge was trialed and evaluated. It was found that a significant majority (86.2%) of students reported at least some change in their understanding of professional engineering practice. No significant difference was observed in these response rates between the three demographic categories (gender, study mode and course of study) of respondents. Student written comments about how their understanding of professional engineering practice had changed indicated that they benefited from, and valued exposure to, aspects of professional engineering practice early in their undergraduate studies.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ahmad Zia Wahdat ◽  
Michael Gunderson

PurposeThe study investigates whether there is an association between climate types and farm risk attitudes of principal operators.Design/methodology/approachThe study exploits temperature variation in the diverse climate types across the US and defines hot- and cold-climate states. Ordered logit and generalized ordered logit models are used to model principal operators' farm risk attitudes, which are measured on a Likert scale. The study uses two datasets. The first dataset is a 2017 survey of US large commercial producers (LCPs). The second dataset provides a Köppen-Geiger climate classification of the US at a spatial resolution of 5 arcmin for a 25-year period (1986–2010).FindingsThe study finds that principal operators in hot-climate states are 4–5% more likely to have a higher willingness to take farm risk compared to principal operators in cold-climate states.Research limitations/implicationsIt is likely that farm risk mitigation decisions differ between hot- and cold-climate states. For instance, the authors show that corn acres' enrollment in federal crop insurance and computers' usage for farm business are pursued more intensely in cold-climate states than in hot-climate states. A differentiation of farm risk attitude by hot- and cold-climate states may help agribusiness, the government and economists in their farm product offerings, farm risk management programs and agricultural finance models, respectively.Originality/valueBased on Köppen-Geiger climate classification, the study introduces hot- and cold-climate concepts to understand the relationship between climate types and principal operators' farm risk attitudes.


2018 ◽  
Vol 8 (3) ◽  
pp. 151 ◽  
Author(s):  
AMM Ullah ◽  
Khalifa Harib

This article addresses the issue of educating engineering students with the knowledge and skills of Computer-Aided Design and Manufacturing (CAD/CAM). In particular, three carefully designed tutorials—cutting tool offsetting, tool-path generation for freeform surfaces, and the integration of advanced machine tools (e.g., hexapod-based machine tools) with solid modeling—are described. The tutorials help students gain an in-depth understanding of how the CAD/CAM-relevant hardware devices and software packages work in real-life settings. At the same time, the tutorials help students achieve the following educational outcomes: (1) an ability to apply the knowledge of mathematics, science, and engineering; (2) an ability to design a system, component, or process to meet the desired needs, (3) an ability to identify, formulate, and solve engineering problems; and (4) an ability to use the techniques, skills, and modern engineering tools that are necessary for engineering practice. The tutorials can be modified for incorporating other contemporary issues (e.g., additive manufacturing, reverse engineering, and sustainable manufacturing), which can be delved into as a natural extension of this study.


Author(s):  
Michael Barclift ◽  
Timothy W. Simpson ◽  
Maria Alessandra Nusiner ◽  
Scarlett Miller

Additive manufacturing (AM) provides engineers with nearly unlimited design freedom, but how much do they take advantage of that freedom? The objective is to understand what factors influence a designer’s creativity and performance in Design for Additive Manufacturing (DFAM). Inspired by the popular Marshmallow Challenge, this exploratory study proposes a framework in which participants apply their DFAM skills in sketching, CAD modeling, 3D-Printing, and a part testing task. Risk attitudes are assessed through the Engineering Domain-Specific Risk-Taking (E-DOSPERT) scale, and prior experiences are captured by a self-report skills survey. Multiple regression analysis found that the average novelty of the participant’s ideas, engineering degree program, and risk seeking preference were statistically significant when predicting the performance of their ideas in AM. This study provides a common framework for AM educators to assess students’ understanding and creativity in DFAM, while also identifying student risk attitudes when conducting an engineering design task.


Author(s):  
Aleksander Czekanski ◽  
Maher Al-Dojayli ◽  
Tom Lee

Engineering practice and design in particular have gone through several changes during the last two decades whether due to scientific achievements including the evolution in novel engineering materials, computational advancements, globalization and economic constraints as well as the strategic needs which are the drive for innovative engineering. All these factors have impacted and shaped to certain extent the educational system in North America and Canada in particular. Currently, high percentage of the engineering graduates would require extensive training in industry to be able to conduct reliable complex engineering designs supported by scientific verification and validation, understand the complete design stages and phases, and identify the economic and cultural impact on such designs. This task, however, faces great challenges without educational support in such vastly changing economy.Lots of attention has been devoted to engineering design education in the recent years to incorporate engineering design courses supported by team design projects and capstone projects. Nevertheless, the lack of integrated education system towards engineering design programs can undermine the benefits of such efforts. In this paper, observations and analysis of the challenges in engineering design are presented from both academic and industrial points of view. Furthermore, a proposed vertical and lateral engineering education program is discussed. This program is structured to cover every year of the engineering education curricula, which emphasizes on innovative thinking, design strategies, support from and integration with other technical engineering courses, the use of advanced analysis tools, team collaboration, management and leadership, multidisciplinary education and industrial involvement. Its courses have just commenced for freshmen engineering students at the newly launched Mechanical Engineering Department at the Lassonde School of Engineering, York University.


Author(s):  
Zol Bahri Razali ◽  
James Trevelyan

Empirical studies suggest that practical intelligence acquired in engineering laboratories is valuable in engineering practice and could also be a useful learning outcome that is a result from a laboratory experience. To prove this, the author started a project to understand further about the practical learning outcomes from traditional laboratory classes. When tools used by psychologists were applied to measure practical intelligence in an electronics laboratory class, not only could a significant gain in hands-on practical intelligence be measured, but students’ ability to diagnose equipment faults could also be predicted. For the first time, therefore, the author can demonstrate that there are real advantages inherent in hands-on laboratory classes, and supported by Outcome Based Education (OBE) method, it is possible to measure this advantage. It is possible that measurements of practical intelligence may reveal new and more powerful ways for students to acquire practical knowledge. The results firstly demonstrate the ability to devise effective ways to assess the outcomes of practical intelligence acquired by engineering students from their laboratory experiences. The results from the study show that the score on practical intelligence outcomes is proportional with the outcomes of the ability in diagnosing equipment faults. Therefore, the novel results suggest that practical intelligence scores predict the ability to diagnose experiment faults for similar laboratory equipment.


Author(s):  
Michael S. Pritchard ◽  
Elaine E. Englehardt

As an area of academic study, engineering ethics focuses primarily on practical ethical issues. A primary aim of the study of practical ethics is to help students make good ethical decisions in whatever practical endeavors they may undertake, including in their chosen careers. The authors argue that reflection on the sorts of ethical problems that arise in engineering practice should be the starting point, with ethical theory coming into view primarily in this context. This is in contrast to a more “top-down” approach that tries to “apply” theory to practice only after laying out a spectrum of philosophically grounded theories, each of which attempts to give us a comprehensive picture of ethics, as such.


Author(s):  
Josep M. Basart

Engineering students are introduced to their profession's ethical and social responsibilities along with their education and training at university. This might be the only time and place where public welfare engagement may be promoted by the institution and acknowledged by students. Their future behavior as engineers heavily depends on the understanding and commitment they may develop during this process. The purpose of this chapter is to discuss the main points related to the teaching and learning of Engineering Ethics at universities. In order to gain insight into this complex educational scene, a set of questions are formulated and explored. The discussion of these questions amounts to explain what Engineering Education consists of, how to integrate Engineering Ethics courses into the curriculum and develop instructional designs for classroom teaching, who should assume teaching responsibilities, and finally, what Engineering Ethics goals should be. For each query, the primal issues, controversies, and alternatives are discussed.


Sign in / Sign up

Export Citation Format

Share Document