A Mechanistic Multibody Model for Simulating the Dynamics of a Vertical Piano Action

Author(s):  
Ramin Masoudi ◽  
Stephen Birkett ◽  
John McPhee

The theoretical framework for constructing a fully mechanistic multibody dynamic model of a vertical piano action is described, and its general validity is established. Equations of motion are derived symbolically using a graph-theoretic formulation. Model fidelity is increased by introducing several novel features: (i) a new contact model for representing the compression of the felt-lined interfaces between interacting parts, capable of capturing the intermittent loading and unloading of these contacts occurring through the key stroke, as well as providing smooth transitions between these states; (ii) models for two important components that are unique to the vertical action, the bridle strap and the butt spring; (iii) a sophisticated key pivot model that captures both the rotational motion and the vertical translation of the key as it can lift off the balance rail under some conditions; (iv) flexible beam models for backcheck wire and hammer shank so as to predict observed vibrations in the response accurately; and (v) coupling of the mechanism model to a flexible stiff string model for realistic hammer impact. For simulation, parameters were obtained by experimental testing and measurement of a physical prototype vertical action. Techniques are described for the virtual regulation of the model to ensure that initial conditions and pseudostatic response accurately represent the precise configuration and desired relationships between the parts during the key stroke. Two input force profiles were used for simulations, a forte pressed (hard) and piano pressed touch (soft), typical of those measured at the key surface when activated by a pianist. Simulated response to these quite different inputs is described, and compared to experimental observations obtained from a physical prototype.

2004 ◽  
Vol 126 (2) ◽  
pp. 347-358 ◽  
Author(s):  
Mohsen Dadfarnia ◽  
Nader Jalili ◽  
Bin Xian ◽  
Darren M. Dawson

A Lyapunov-based control strategy is proposed for the regulation of a Cartesian robot manipulator, which is modeled as a flexible cantilever beam with a translational base support. The beam (arm) cross-sectional area is assumed to be uniform and Euler-Bernoulli beam theory assumptions are considered. Moreover, two types of damping mechanisms; namely viscous and structural dampings, are considered for the arm material properties. The arm base motion is controlled utilizing a linear actuator, while a piezoelectric (PZT) patch actuator is bonded on the surface of the flexible beam for suppressing residual beam vibrations. The equations of motion for the system are obtained using Hamilton’s principle, which are based on the original infinite dimensional distributed system. Utilizing the Lyapunov method, the control force acting on the linear actuator and control voltage for the PZT actuator are designed such that the base is regulated to a desired set-point and the exponential stability of the system is attained. Depending on the composition of the controller, some favorable features appear such as elimination of control spillovers, controller convergence at finite time, suppression of residual oscillations and simplicity of the control implementation. The feasibility of the controller is validated through both numerical simulations and experimental testing.


2012 ◽  
Vol 8 (1) ◽  
pp. 1-15
Author(s):  
Gy. Sitkei

Motion of particles with air resistance (e.g. horizontal and inclined throwing) plays an important role in many technological processes in agriculture, wood industry and several other fields. Although, the basic equation of motion of this problem is well known, however, the solutions for practical applications are not sufficient. In this article working diagrams were developed for quick estimation of the throwing distance and the terminal velocity. Approximate solution procedures are presented in closed form with acceptable error. The working diagrams provide with arbitrary initial conditions in dimensionless form of general validity.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Vivian Martins Gomes ◽  
Antonio Fernando Bertachini de Almeida Prado ◽  
Justyna Golebiewska

The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth.


2003 ◽  
Vol 25 (3) ◽  
pp. 170-185
Author(s):  
Dinh Van Phong

The article deals with the problem of consistent initial values of the system of equations of motion which has the form of the system of differential-algebraic equations. Direct treating the equations of mechanical systems with particular properties enables to study the system of DAE in a more flexible approach. Algorithms and examples are shown in order to illustrate the considered technique.


1999 ◽  
Author(s):  
S. Park ◽  
J. W. Lee ◽  
Y. Youm ◽  
W. K. Chung

Abstract In this paper, the mathematical model of a Bernoulli-Euler cantilever beam fixed on a moving cart and carrying an intermediate lumped mass is derived. The equations of motion of the beam-mass-cart system is analyzed utilizing unconstrained modal analysis, and a unified frequency equation which can be generally applied to this kind of system is obtained. The change of natural frequencies and mode shapes with respect to the change of the mass ratios of the beam, the lumped mass and the cart and to the position of the lumped mass is investigated. The open-loop responses of the system by arbitrary forcing function are also obtained through numerical simulations.


Author(s):  
Renan F. Corrêa ◽  
Flávio D. Marques

Abstract Aeroelastic systems have nonlinearities that provide a wide variety of complex dynamic behaviors. Nonlinear effects can be avoided in practical applications, as in instability suppression or desired, for instance, in the energy harvesting design. In the technical literature, there are surveys on nonlinear aeroelastic systems and the different manners they manifest. More recently, the bistable spring effect has been studied as an acceptable nonlinear behavior applied to mechanical vibration problems. The application of the bistable spring effect to aeroelastic problems is still not explored thoroughly. This paper contributes to analyzing the nonlinear dynamics of a typical airfoil section mounted on bistable spring support at plunging motion. The equations of motion are based on the typical aeroelastic section model with three degrees-of-freedom. Moreover, a hardening nonlinearity in pitch is also considered. A preliminary analysis of the bistable spring geometry’s influence in its restoring force and the elastic potential energy is performed. The response of the system is investigated for a set of geometrical configurations. It is possible to identify post-flutter motion regions, the so-called intrawell, and interwell. Results reveal that the transition between intrawell to interwell regions occurs smoothly, depending on the initial conditions. The bistable effect on the aeroelastic system can be advantageous in energy extraction problems due to the jump in oscillation amplitudes. Furthermore, the hardening effect in pitching motion reduces the limit cycle oscillation amplitudes and also delays the occurrence of the snap-through.


1992 ◽  
Vol 152 ◽  
pp. 145-152 ◽  
Author(s):  
R. Dvorak

In this article we present a numerical study of the motion of asteroids in the 2:1 and 3:1 resonance with Jupiter. We integrated the equations of motion of the elliptic restricted 3-body problem for a great number of initial conditions within this 2 resonances for a time interval of 104 periods and for special cases even longer (which corresponds in the the Sun-Jupiter system to time intervals up to 106 years). We present our results in the form of 3-dimensional diagrams (initial a versus initial e, and in the z-axes the highest value of the eccentricity during the whole integration time). In the 3:1 resonance an eccentricity higher than 0.3 can lead to a close approach to Mars and hence to an escape from the resonance. Asteroids in the 2:1 resonance with Jupiter with eccentricities higher than 0.5 suffer from possible close approaches to Jupiter itself and then again this leads in general to an escape from the resonance. In both resonances we found possible regions of escape (chaotic regions), but only for initial eccentricities e > 0.15. The comparison with recent results show quite a good agreement for the structure of the 3:1 resonance. For motions in the 2:1 resonance our numeric results are in contradiction to others: high eccentric orbits are also found which may lead to escapes and consequently to a depletion of this resonant regions.


Author(s):  
João L. Costa ◽  
José Natário

We study the free boundary problem for the ‘hard phase’ material introduced by Christodoulou in (Christodoulou 1995 Arch. Ration. Mech. Anal. 130 , 343–400), both for rods in (1 + 1)-dimensional Minkowski space–time and for spherically symmetric balls in (3 + 1)-dimensional Minkowski space–time. Unlike Christodoulou, we do not consider a ‘soft phase’, and so we regard this material as an elastic medium, capable of both compression and stretching. We prove that shocks must be null hypersurfaces, and derive the conditions to be satisfied at a free boundary. We solve the equations of motion of the rods explicitly, and we prove existence of solutions to the equations of motion of the spherically symmetric balls for an arbitrarily long (but finite) time, given initial conditions sufficiently close to those for the relaxed ball at rest. In both cases we find that the solutions contain shocks if and only if the pressure or its time derivative do not vanish at the free boundary initially. These shocks interact with the free boundary, causing it to lose regularity.


Author(s):  
Peter W. Malak ◽  
Anthony J. Buchta ◽  
Philip A. Voglewede

Previously a specific planar reconfigurable mechanism with a variable joint (RRRR1 -RRRP2 Mechanism) was dynamically modeled. The RRRR-RRRP Mechanism functions as a RRRR mechanism in one configuration and as a in RRRP mechanism the other. The kinematics and kinetics of the RRRP and RRRR configurations were previously analyzed with a Lagrangian approach. The developed equations of motion will be validated with a physical prototype in this paper. In addition, a simplified model of the RRRR-RRRP Mechanism is also developed and compared to the experimental results. The experimental angular position of each joint on the RRRR-RRRP Mechanism will be compared to the model position analysis. Particular attention will be given to the transition point when the physical mechanism changes from an RRRR mechanism to RRRP mechanism and vice versa as it is vital to knowing this point for optimal control of the mechanism.


1977 ◽  
Vol 99 (2) ◽  
pp. 284-287 ◽  
Author(s):  
P. K. Gupta ◽  
L. W. Winn ◽  
D. F. Wilcock

The classical differential equations of motion of the ball mass center in an angular contact thrust loaded ball bearing are integrated with prescribed initial conditions in order to simulate the natural high frequency vibrational characteristics of the general motion. Two distinct frequencies are identified in the analytical simulation and their existence is also confirmed experimentally. One of the frequencies is found to be associated with the Hertzian contact spring at the ball race contact and it is therefore defined as the “elastic contact frequency”, Ωe. The other dominant frequency corresponding to oscillatory motion of the ball in the raceway groove appears to be kinematic in nature and it is, therefore, termed as the “bearing kinematic frequency”, Ωk. It is shown that for a given bearing Ωe and Ωk, vary as, respectively, 1/6 and 1/2 powers of the ball contact load and, therefore, for a given load these frequencies correspond to the natural frequencies of the bearing as applied in any vibrational analysis or simulation.


Sign in / Sign up

Export Citation Format

Share Document