Cyclic Viscoplasticity Testing and Modeling of a Service-Aged P91 Steel

2014 ◽  
Vol 136 (4) ◽  
Author(s):  
C. J. Hyde ◽  
W. Sun ◽  
T. H. Hyde ◽  
J. P. Rouse ◽  
T. Farragher ◽  
...  

A service-aged P91 steel was used to perform an experimental program of cyclic mechanical testing in the temperature range of 400 °C–600 °C, under isothermal conditions, using both saw-tooth and dwell (inclusion of a constant strain dwell period at the maximum (tensile) strain within the cycle) waveforms. The results of this testing were used to identify the material constants for a modified Chaboche, unified viscoplasticity model, which can deal with rate-dependant cyclic effects, such as combined isotropic and kinematic hardening, and time-dependent effects, such as creep, associated with viscoplasticity. The model has been modified in order that the two-stage (nonlinear primary and linear secondary) softening which occurs within the cyclic response of the service-aged P91 material is accounted for and accurately predicted. The characterization of the cyclic viscoplasticity behavior of the service-aged P91 material at 500 °C is presented and compared to experimental stress–strain loops, cyclic softening and creep relaxation, obtained from the cyclic isothermal tests.

Author(s):  
C. J. Hyde ◽  
W. Sun ◽  
T. H. Hyde ◽  
J. P. Rouse ◽  
T. Farragher ◽  
...  

A service-aged P91 steel was used to perform an experimental programme of cyclic mechanical testing in the temperature range of 400°C to 600°C, under isothermal conditions, using both saw-tooth and dwell (inclusion of a constant strain dwell period at the maximum (tensile) strain within the cycle) waveforms. The results of this testing were used to identify the material constants for a modified Chaboche, unified visco-plasticity model, which can deal with rate-dependant cyclic effects, such as combined isotropic and kinematic hardening, and time-dependent effects, such as creep, associated with visco-plasticity. The model has been modified in order that the two-stage (non-linear primary and linear secondary) softening which occurs within the cyclic response of the service-aged P91 material is accounted for and accurately predicted. The characterisation of the cyclic visco-plasticity behaviour of the service-aged P91 material at 500°C is presented and compared to experimental stress-strain loops, cyclic softening and creep relaxation, obtained from the cyclic isothermal tests.


2000 ◽  
Author(s):  
M. E. Bange ◽  
A. J. Beaudoin ◽  
M. G. Stout ◽  
S. R. MacEwen

Abstract Deformation at elevated temperatures in combination with high strain rates leads to recovery and recrystallization in aluminum alloys. Previous work in recrystallization has emphasized the detailing of microstructural trend in progression from the deformed to the annealed state. In the following, we examine the effect of rate dependence on deformation on AA 5182 and AA 6061. It is demonstrated that identification of underlying microstructural mechanisms is critical. An experimental program is then outlined for characterization of recovery and recrystallization of AA 5182. Instantaneous hardening rate and flow stress are developed from interrupted compression tests. These data are used to establish a quantitative measure of recovery through evaluation of a state variable for work hardening, the mechanical threshold. It is intended that the results serve as a foundation for development of relations for evolution of a mechanical state variable in the presence of recrystallization. Such a framework is necessary for the practical prediction of interstand recrystallization in hot rolling operations.


2021 ◽  
Vol 22 ◽  
Author(s):  
Kehan Zhang ◽  
Yilin Li ◽  
Yao Fu ◽  
Tiantian Cui ◽  
Qian Wang ◽  
...  

Background: Herbal medicine Angelica dahurica is widely employed for the treatment of rheumatism and pain relief in China. Oxypeucedanin is a major component of the herb. Objectives : The objectives of this study are aimed at the investigation of mechanism-based inactivation of CYP2B6 and CYP2D6 by oxypeucedanin, characterization of the reactive metabolites associated with the enzyme inactivation, and identification of the P450s participating in the bioactivation of oxypeucedanin. Methods : Oxypeucedanin was incubated with liver microsomes or recombinant CYPs2B6 and 2D6 under designed conditions, and the enzyme activities were measured by monitoring the generation of the corresponding products. The resulting reactive intermediates were trapped with GSH and analyzed by LC-MS/MS. Results : Microsomal incubation with oxypeucedanin induced a time-, concentration-, and NADPH-dependent inhibition of CYPs2B6 and 2D6 with kinetic values of KI/kinact 1.82 µM/0.07 min-1 (CYP2B6) and 8.47 µM/0.044 min-1 (CYP2D6), respectively. Ticlopidine and quinidine attenuated the observed time-dependent enzyme inhibitions. An epoxide and/or γ-ketoenal intermediate(s) derived from oxypeucedanin was/were trapped in microsomal incubations. CYP3A4 was the primary enzyme involved in the bioactivation of oxypeucedanin. Conclusion : Oxypeucedanin was a mechanism-based inactivator of CYP2B6 and CYP2D6. An epoxide and/or γ-ketoenal intermediate(s) may be responsible for the inactivation of the two enzymes.


2019 ◽  
Vol 11 (8) ◽  
pp. 2200 ◽  
Author(s):  
Gerardo Araya-Letelier ◽  
Pablo Maturana ◽  
Miguel Carrasco ◽  
Federico Carlos Antico ◽  
María Soledad Gómez

Commercial polypropylene fibers are incorporated as reinforcement of cement-based materials to improve their mechanical and damage performances related to properties such as tensile and flexural strength, toughness, spalling and impact resistance, delay formation of cracks and reducing crack widths. Yet, the production of these polypropylene fibers generates economic costs and environmental impacts and, therefore, the use of alternative and more sustainable fibers has become more popular in the research materials community. This paper addresses the characterization of recycled polypropylene fibers (RPFs) obtained from discarded domestic plastic sweeps, whose morphological, physical and mechanical properties are provided in order to assess their implementation as fiber-reinforcement in cement-based mortars. An experimental program addressing the incorporation of RPFs on the mechanical-damage performance of mortars, including a sensitivity analysis on the volumes and lengths of fiber, is developed. Using analysis of variance, this paper shows that RPFs statistically enhance flexural toughness and impact strength for high dosages and long fiber lengths. On the contrary, the latter properties are not statistically modified by the incorporation of low dosages and short lengths of RPFs, but still in these cases the incorporation of RPFs in mortars have the positive environmental impact of waste encapsulation. In the case of average compressive and flexural strength of mortars, these properties are not statistically modified when adding RPFs.


Parasitology ◽  
1994 ◽  
Vol 109 (5) ◽  
pp. 623-630 ◽  
Author(s):  
L. J. Drake ◽  
A. E. Bianco ◽  
D. A. P. Bundy ◽  
F. Ashall

Excretory/secretory (E/S) material of Trichuris muris was found to contain 2 major peptidases, Mr 85 and 105 kDa, which degrade gelatin optimally at pH 6·0 in sodium dodecyl sulphate–polyacrylamide gels. The peptidases were inactivated diisopropylfluorophosphate, leupeptin and soybean trypsin inhibitor, but were unaffected by inhibitors of aspartic-, cysteine- and metallo-peptidases, indicating that they are serine peptidases. Both enzymes were detectable within 5 h after incubation of worms in culture medium and showed a time-dependent increase in levels. Neither peptidase was detected in worm extracts, suggesting that they are activated during or following secretion from worms. Live worms degraded radio-isotope labelled extracellular matrix protein substratum derived from mammalian cells. Aminopeptidase activities capable of catalysing hydrolysis of amino acyl aminomethylcoumarin (MCA) substrates and a Z-Phe-Arg-MCA-hydrolysing cysteine peptidase activity, were detected in extracts of adult worms but not in E/S material.


2020 ◽  
Vol 29 (9) ◽  
pp. 1379-1396
Author(s):  
Jun Tian ◽  
Xiaolong Fu ◽  
Xuejiao Shao ◽  
Lu Jiang ◽  
Jian Li ◽  
...  

A series of experiments subjected to uniaxial and non-proportionally multiaxial cyclic loadings were performed to investigate the ratcheting responses of SA508 Gr.3 steel at room and elevated temperatures. The influences of different stress levels and nonproportional loading paths on the damage-coupled ratcheting responses were discussed. From experimental results, cyclic softening characteristic and dynamic strain aging can be observed under cyclic loadings. Moreover, the steel exhibits an obvious nonproportional path-dependence of the damage evolution under multiaxial loading paths. To numerically simulate the ratcheting responses under uniaxial and multiaxial loadings with the extended cyclic plastic model, the damage-coupled variable was introduced into the classic isotropic and nonlinear kinematic hardening rules. Corresponding material parameters could be calibrated from experimental data, and comparisons between experimental and simulated results were performed to validate the proposed model.


Sign in / Sign up

Export Citation Format

Share Document