Combustion Analysis of Syngas Fuels Applied in a Micro Gas Turbine Combustor With a Rotating Casing

Author(s):  
Maaz Ajvad ◽  
Hsin-Yi Shih

Abstract Combustion characteristics of a can combustor with a rotating casing for an innovative micro gas turbine have been modeled. The effects of syngas compositions and the rotating speed on the combustor performance were investigated. The effects of rotation on the combustion performance have been studied previously with methane as the fuel. This work extended the investigation for future application with syngas blended fuels. Two typical compositions of syngas were used namely: H2-rich (H2:CO=80:20, by volume) and equal molar (H2:CO=50:50). The analyses were performed with a computational model, which consists of three-dimension compressible k-ε realizable turbulent flow model and presumed probability density function for combustion process invoking a laminar flamelet assumption generated by detailed chemical kinetics from GRI 3.0. As syngas is substituted for methane at a constant fuel flow rate, the high temperature flame is stabilized along the wall of the combustor liner. With the casing rotating, pattern factor and exit temperature increase, but the lower heating value of syngas causes a power shortage. To make up the power, the fuel flow rate is raised to maintain the thermal load. Consequently, the high temperature flame is pushed downstream due to increased fuel injection velocity. NOx emission decreases as the rotational speed increases in both cases. Pattern factor decreases but exit temperature increases with the increase of roatation speed indicating a higher combustion efficiency. However, there is possible hotspots at exit due to higher pattern factor (PF>0.3) for H2-rich and equal molar syngas at lower speed of rotation, which needs to be resolved by improving the cooling strategy.

Author(s):  
Chi-Rong Liu ◽  
Hsin-Yi Shih

The purpose of this study is to investigate the combustion and emission characteristics of syngas fuels applied in a micro gas turbine, which is originally designed for a natural gas fired engine. The computation results were conducted by a numerical model, which consists of the three-dimension compressible k–ε model for turbulent flow and PPDF (presumed probability density function) model for combustion process. As the syngas is substituted for methane, the fuel flow rate and the total heat input to the combustor from the methane/syngas blended fuels are varied with syngas compositions and syngas substitution percentages. The computed results presented the syngas substitution effects on the combustion and emission characteristics at different syngas percentages (up to 90%) for three typical syngas compositions and the conditions where syngas applied at fixed fuel flow rate and at fixed heat input were examined. Results showed the flame structures varied with different syngas substitution percentages. The high temperature regions were dense and concentrated on the core of the primary zone for H2-rich syngas, and then shifted to the sides of the combustor when syngas percentages were high. The NOx emissions decreased with increasing syngas percentages, but NOx emissions are higher at higher hydrogen content at the same syngas percentage. The CO2 emissions decreased for 10% syngas substitution, but then increased as syngas percentage increased. Only using H2-rich syngas could produce less carbon dioxide. The detailed flame structures, temperature distributions, and gas emissions of the combustor were presented and compared. The exit temperature distributions and pattern factor (PF) were also discussed. Before syngas fuels are utilized as an alternative fuel for the micro gas turbine, further experimental testing is needed as the modeling results provide a guidance for the improved designs of the combustor.


Author(s):  
Chi-Rong Liu ◽  
Hsin-Yi Shih

The design and model simulation of a can combustor has been made for future syngas (mainly H2/CO mixtures) combustion application in a micro gas turbine. In previous modeling studies with methane as the fuel, the analysis indicated the design of the combustor is quite satisfactory for the 60-kW gas turbine; however, the cooling may be the primary concerns as several hot spots were found at the combustor exit. When the combustor is fueled with methane/syngas mixtures, the flames would be pushed to the sides of the combustor with the same fuel injection strategy. In order to sustain the power load, the exit temperature became too high for the turbine blades, which deteriorated the cooling issue of the compact combustor. Therefore, the designs of the fuel injection are modified, and film cooling is employed. Consequently, the simulation of the modified combustor is conducted by the commercial CFD software Fluent. The computational model consists of the three-dimensional, compressible k-ε model for turbulent flows and PPDF (Presumed Probability Density Function) model for combustion process between methane/syngas and air invoking a laminar flamelet assumption. The flamelet is generated by detailed chemical kinetics from GRI 3.0. Thermal and prompt NOx mechanisms are adopted to predict the NO formation. At the designed operation conditions, the modeling results show that the high temperature flames are stabilized in the center of the primary zone where a recirculation zone is generated for methane combustion. The average exit temperature of the modified can combustor is 1293 K, which is close to the target temperature of 1200 K. Besides, the exit temperatures exhibit a more uniform distribution by coupling film cooling, resulting in a low pattern factor of 0.22. The NO emission is also low with the increased number of the dilution holes. Comparing to the results for the previous combustor, where the chemical equilibrium was assumed for the combustion process, the flame temperatures are predicted lower with laminar flamelet model. The combination of laminar flamelet and detailed chemistry produced more reasonable simulation results. When methane/syngas fuels are applied, the high temperature flames could also be stabilized in the core region of the primary zone by radially injecting the fuel inward instead of outward through the multiple fuel injectors. The cooling issues are also resolved through altering the air holes and the film cooling. The combustion characteristics were then investigated and discussed for future application of methane/syngas fuels in the micro gas turbine. Although further experimental testing is still needed to employ the syngas fuels for the micro gas turbine, the model simulation paves an important step to understand the combustion performance and the satisfactory design of the combustor.


Author(s):  
Hun Cha ◽  
Yoo Seok Song ◽  
Kyu Jong Kim ◽  
Jung Rae Kim ◽  
Sung Min KIM

An inappropriate design of HRSG (Heat Recovery Steam Generator) may lead to mechanical problems including the fatigue failure caused by rapid load change such as operating trip, start-up or shut down. The performance of HRSG with dynamic analysis should be investigated in case of start-up or shutdown. In this study, dynamic analysis for the HRSG system was carried out by commercial software. The HRSG system was modeled with HP, IP, LP evaporator, duct burner, superheater, reheater and economizer. The main variables for the analysis were the temperature and mass flow rate from gas turbine and fuel flow rate of duct burner for given start-up (cold/warm/hot) and shutdown curve. The results showed that the exhaust gas condition of gas turbine and fuel flow rate of duct burner were main factors controlling the performance of HRSG such as flow rate and temperature of main steam from final superheater and pressure of HP drum. The time delay at the change of steam temperature between gas turbine exhaust gas and HP steam was within 2 minutes at any analysis cases.


Author(s):  
Chi-Rong Liu ◽  
Ming-Tsung Sun ◽  
Hsin-Yi Shih

Abstract The design and model simulation of a can combustor has been made for future syngas combustion application in a micro gas turbine. An improved design of the combustor is studied in this work, where a new fuel injection strategy and film cooling are employed. The simulation of the combustor is conducted by a computational model, which consists of three-dimensional, compressible k-ε model for turbulent flows and PPDF (Presumed Probability Density Function) model for combustion process invoking a laminar flamelet assumption generated by detailed chemical kinetics from GRI 3.0. Thermal and prompt NOx mechanisms are adopted to predict the NO formation. The modeling results indicated that the high temperature flames are stabilized in the center of the primary zone by radially injecting the fuel inward. The exit temperatures of the modified can combustor drop and exhibit a more uniform distribution by coupling film cooling, resulting in a low pattern factor. The combustion characteristics were then investigated and the optimization procedures of the fuel compositions and fuel flow rates were developed for future application of methane/syngas fuels in the micro gas turbine.


Author(s):  
Marek Dzida ◽  
Zygfryd Domachowski

A gas turbine ship propulsion control system transients have been investigated. On the basis of a mathematical model composed of blocks modelling a two-shaft gas turbine, a gear (mechanical or electric), and a coupling shaft, some preliminary simulations have been carried out. Ship propeller shaft angular velocity, fuel flow rate, and gas turbine combustion chamber outlet temperature response to the ship propeller shaft angular velocity set point, and fuel flow rate, changes have been analyzed. Influences of limiters in the controller action on analyzed transients have been compared.


1975 ◽  
Vol 19 (04) ◽  
pp. 254-265
Author(s):  
Samuel H. Brown ◽  
Reidar Alvestad

This paper describes an analog computer maneuvering simulation of a destroyer study ship. The mathematical model used includes the ship propulsion machinery dynamics and the ship equations of motion. The model couples the ship propulsion dynamics equations with nonlinear maneuvering equations. The power plant representation consists of a simplified mathematical model of a General Electric LM2500 gas turbine engine and is primarily an engine mapping of engine torque versus engine speed using fuel flow. rate as a parameter. The simulation is used to accurately predict slow transients in ship speed during maneuvers resulting from slow increases in the fuel flow rate to the gas turbine. The advantage of the modified model presented in this paper over those not including propulsion dynamics is that it permits simulations of the effects of maneuvering on the propulsion plant.


Author(s):  
Hailin Li ◽  
W. Stuart Neill ◽  
Wally Chippior ◽  
Joshua D. Taylor

In this paper, cyclic variations in the combustion process of a single-cylinder HCCI engine operated with n-heptane were measured over a range of intake air temperatures and pressures, compression ratios, air/fuel ratios, and exhaust gas recirculation (EGR) rates. The operating conditions produced a wide range of combustion timings from overly advanced combustion where knocking occurred to retarded combustion where incomplete combustion was detected. Cycle-to-cycle variations were shown to depend strongly on the crank angle phasing of 50% heat release and fuel flow rate. Combustion instability increased significantly with retarded combustion phasing especially when the fuel flow rate was low. Retarded combustion phasing can be tolerated when the fuel flow rate is high. It was also concluded that the cyclic variations in imep are primarily due to the variations in the total heat released from cycle-to-cycle. The completeness of the combustion process in one cycle affects the in-cylinder conditions and resultant heat release in the next engine cycle.


Author(s):  
Michael T. Timko ◽  
Scott C. Herndon ◽  
Ezra C. Wood ◽  
Timothy B. Onasch ◽  
Megan J. Northway ◽  
...  

The potential human health and environmental impacts of aircraft gas turbine engine emissions during normal airport operation are issues of growing concern. During the JETS/Aircraft Particle Emissions eXperiment(APEX)-2 and APEX-3 field campaigns, we performed an extensive series of gas phase and particulate emissions measurements of on-wing gas turbine engines. In all, nine different CFM56 style engines (including both CFM56-3B1 and -7B22 models) and seven additional engines (two RB211-535E4-B engines, three AE3007 engines, one PW4158, and one CJ6108A) were studied to evaluate engine-to-engine variability. Specific gas-phase measurements include NO2, NO, and total NOx, HCHO, C2H4, CO, and a range of volatile organic compounds (e.g., benzene, styrene, toluene, naphthalene). A number of broad conclusions can be made based on the gas-phase data set: (1) field measurements of gas-phase emission indices (EIs) are generally consistent with ICAO certification values; (2) speciation of gas phase NOx between NO and NO2 is reproducible for different engine types and favors NO2 at low power (and low fuel flow rate) and NO at high power (high fuel flow rate); (3) emission indices of gas-phase organic compounds and CO decrease rapidly with increasing fuel flow rate; (4) plotting EI-CO or volatile organic compound EIs against fuel flow rate collapses much of the variability between the different engines, with one exception (AE3007); (5) HCHO, ethylene, acetaldehyde, and propene are the most abundant volatile organic compounds present in the exhaust gases that we can detect, independent of engine technology differences. Empirical correlations accurate to within 30% and based on the publicly available engine parameters are presented for estimating EI-NOx and EI-NO2. Engine-to-engine variability, unavailability of combustor input conditions, changing ambient temperatures, and complex reaction dynamics limit the accuracy of global correlations for CO or volatile organic compound EIs.


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668503 ◽  
Author(s):  
Chaozhi Cai ◽  
Qiang Ma ◽  
Di Wu ◽  
Leyao Fan ◽  
Bingsheng Wu

This article describes the configuration and working principle of the high-temperature combustion system; according to the control requirements which have a wide range and high precision for fuel flow-rate of the high-temperature combustion system, a set of fuel supply system is designed based on the frequency conversion hydraulic technology and electro-hydraulic proportional technique. An automatic control system with the function of field and remote control is carried out to achieve the precise supply of the fuel. The transfer function which describes the dynamic characteristic of the fuel supply system is given and the dynamic matrix control algorithm is employed to realize the high-quality control of fuel flow-rate. The experimental results show that the response time of flow-rate is about 12 s, almost no overshoot, and control accuracy within 1%. Therefore, the designed fuel supply system can meet the requirements of the high-temperature combustion system, and the designed control system has good control performance.


Sign in / Sign up

Export Citation Format

Share Document