scholarly journals The Effect of Oxygenated Turpentine Oil Additive in Diesel Fuel on the Performance and Emission Characteristics in One-Cylinder DI Engines

Designs ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 73
Author(s):  
Asep Kadarohman ◽  
Fitri Khoerunnisa ◽  
Syazwana Sapee ◽  
Ratnaningsih Eko Sardjono ◽  
Izuan Izzudin ◽  
...  

A study on the application of oxygenated turpentine oil as a bio-additive in diesel fuel was conducted. The purpose of this research was to investigate the effect of oxygenated turpentine oil additive in diesel fuel on the performance and emission characteristics in diesel engines. Oxygenated turpentine oil is obtained from the oxidation process of turpentine oil. In this experimental study, the influences of oxygenated turpentine oil-diesel blended fuel OT0.2 (0.2% vol oxygenated turpentine oil and 99.8% vol diesel) were compared with pure diesel on engine performance, and emission characteristics were examined in a one-cylinder four-stroke CI engine. The test was performed at two engine loads (25% and 50%) and seven engine speeds (from 1200–2400 rpm with intervals of 200 rpm). The physiochemical characteristics of test fuels were acquired. The engine indicated power, indicated torque, fuel flow rate, and emissions (carbon dioxide, CO2; carbon monoxide, CO; and nitrogen oxide, NOX) were examined. The results revealed that the engine power shows slight increments of 0.7–1.1%, whereas the engine torque slightly decreased with oxygenated turpentine usage compared to pure diesel in most conditions. Furthermore, a reduction in NOX emission decreased by about 0.3–66% with the addition of oxygenated turpentine in diesel compared to diesel. However, usage of OT0.2 decreased fuel flow rate in most speeds at low load but gave a similar value to diesel at 50% load. CO emissions slightly increased with an average of 1.2% compared to diesel while CO2 emissions increased up to 37.5% than diesel. The high-water content, low cetane number, and low heating value of oxygenated turpentine oil were the reasons for the inverse effect found in the engine performances.

Author(s):  
Chi-Rong Liu ◽  
Hsin-Yi Shih

The purpose of this study is to investigate the combustion and emission characteristics of syngas fuels applied in a micro gas turbine, which is originally designed for a natural gas fired engine. The computation results were conducted by a numerical model, which consists of the three-dimension compressible k–ε model for turbulent flow and PPDF (presumed probability density function) model for combustion process. As the syngas is substituted for methane, the fuel flow rate and the total heat input to the combustor from the methane/syngas blended fuels are varied with syngas compositions and syngas substitution percentages. The computed results presented the syngas substitution effects on the combustion and emission characteristics at different syngas percentages (up to 90%) for three typical syngas compositions and the conditions where syngas applied at fixed fuel flow rate and at fixed heat input were examined. Results showed the flame structures varied with different syngas substitution percentages. The high temperature regions were dense and concentrated on the core of the primary zone for H2-rich syngas, and then shifted to the sides of the combustor when syngas percentages were high. The NOx emissions decreased with increasing syngas percentages, but NOx emissions are higher at higher hydrogen content at the same syngas percentage. The CO2 emissions decreased for 10% syngas substitution, but then increased as syngas percentage increased. Only using H2-rich syngas could produce less carbon dioxide. The detailed flame structures, temperature distributions, and gas emissions of the combustor were presented and compared. The exit temperature distributions and pattern factor (PF) were also discussed. Before syngas fuels are utilized as an alternative fuel for the micro gas turbine, further experimental testing is needed as the modeling results provide a guidance for the improved designs of the combustor.


Author(s):  
M Canakci

Biodiesel is an alternative diesel fuel that can be produced from renewable feedstocks such as vegetable oils, waste frying oils, and animal fats. It is an oxygenated, non-toxic, sulphur-free, biodegradable, and renewable fuel. Many engine manufacturers have included this fuel in their warranties since it can be used in diesel engines without significant modification. However, the fuel properties such as cetane number, heat of combustion, specific gravity, and kinematic viscosity affect the combustion, engine performance and emission characteristics. In this study, the engine performance and emissions characteristics of two different petroleum diesel fuels (No. 1 and No. 2 diesel fuels) and biodiesel from soybean oil and its 20 per cent blends with No. 2 diesel fuel were compared. The results showed that the engine performance of the neat biodiesel and its blend was similar to that of No. 2 diesel fuel with nearly the same brake fuel conversion efficiency, and slightly higher fuel consumption. CO2 emission for the biodiesel was slightly higher than for the No. 2 diesel fuel. Compared with diesel fuels, biodiesel produced lower exhaust emissions, except NO x.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Rajneesh Kumar ◽  
Anoop Kumar Dixit

Engine performance and emission characteristics of unmodified biodiesel fueled diesel engines are highly influenced by their ignition and combustion behavior. In this study, emission and combustion characteristics were studied when the engine operated using the different blends (B10, B20, B30, and B40) and normal diesel fuel (B0) as well as when varying the compression ratio from 16.5 : 1 to 17.5 : 1 to 18.5 : 1. The change of compression ratio from 16.5 : 1 to 18.5 : 1 resulted in 27.1%, 27.29%, 26.38%, 28.48%, and 34.68% increase in cylinder pressure for the blends B0, B10, B20, B30, and B40, respectively, at 75% of rated load conditions. Higher peak heat release rate increased by 23.19%, 14.03%, 26.32%, 21.87%, and 25.53% for the blends B0, B10, B20, B30, and B40, respectively, at 75% of rated load conditions, when compression ratio was increased from16.5 : 1 to 18.5 : 1. The delay period decreased by 21.26%, CO emission reduced by 14.28%, andNOxemission increased by 22.84% for B40 blends at 75% of rated load conditions, when compression ratio was increased from 16.5 : 1 to 18.5 : 1. It is concluded that Jatropha oil ester can be used as fuel in diesel engine by blending it with diesel fuel.


Author(s):  
S. Som ◽  
Z. Wang ◽  
W. Liu ◽  
D. E. Longman

The current study compares the predictions by four different published mechanisms in literature which have been used for 3 dimensional compression ignition engine simulations. These four mechanisms use two different sets of surrogates: (a) methyl decanoate, methyl 9-decenoate, and n-heptane, (b) methyl butanoate and n-heptane. The mechanisms include: (1) 115 species and 460 reactions [1] using surrogate mixture (a); (2) 77 species and 209 reactions [2] using surrogate mixture (a); (3) 145 species and 869 reactions [3] using surrogate mixture (b); (4) 41 species and 150 reactions [4] using surrogate mixture (b). The different reduction techniques implemented to obtain the reduced mechanisms from the detailed mechanisms are briefly described. The surrogate mixture compositions are then modified to match the cetane number of the real biodiesel fuels. The experimental data for comparison include jet-stirred reactor data for species concentrations for biodiesel derived from rapeseed oil and 3 dimensional constant volume combustion data (for ignition, combustion, and emission characteristics), engine data (for pressure, heat release rate, and emission characteristics) for soy-derived biodiesel. 0-D and 3-D constant volume simulations with all the mechanisms can capture the general experimental trends quite well. Large surrogate models and mechanisms tend to provide better predictions at the expense of increased computational costs. The 115 species and 460 reaction mechanism was observed to perform the best among the mechanisms in predicting the jet-stirred reactor and 3-D constant volume data. It was observed that all the mechanisms are able to qualitatively capture the engine performance and emission characteristics.


2014 ◽  
Vol 607 ◽  
pp. 588-593 ◽  
Author(s):  
Amir Aziz ◽  
Ahmad Fitri Yusof ◽  
Rizalman Mamat ◽  
W.N. Azeem

An emulsion of biodiesel and water is one of the possible approaches that have been used to overcome diesel engine pollution. In this work, the performance and emission characteristics of a 4-cylinder diesel engine using pure diesel, biodiesel B20 and emulsified biodiesel were investigated. Emulsified biodiesel containing 5 % and 10 % water were utilize for the engine tests. During the experimental work, the engine was set-up at 2500 rpm and 20 % to 60 % loads. The result shows the reduction in NOx formation when the water content in emulsified biodiesel increased from 5 % to 10%. For the performance, there were no significant differences between the engine break powers measured for emulsified biodiesel containing 5% water and diesel fuel.


Author(s):  
Alex Y ◽  
Roji George Roy

Biodiesel has become more attractive recently, because of its environmental benefits and the fact that it is made from renewable resources. Over the past few decades, most of the countries depending on diesel engines for transportation. Some of its valuable advantages like highest thermal efficiency made it very popular. At the same time, the cost of diesel fuel is increasing, due to the depletion of fossil fuels. In this current scenario, we need an alternative fuel instead of diesel fuel. Many of the researchers have successfully placed several works on generating energy from different types of alternative sources including solar and some kind of conversion processes including renewable agricultural products into liquid fuel. One of the biggest challenges for developing countries in relation to energy consumption is to develop and implement technologies that help to improve efficiency of automobile engines, also to reduce the emissions of harmful gases and particulate matters. In order to avoid environmental impacts, emissions are reduced or eliminated by introducing renewable energy resources. The present research chronicles the production and testing of renewable biodiesel fuel derived from virgin coconut oil on a diesel engine, to analyses the engine performance and emission characteristics. In the first phase of work, production of biodiesel fuel from virgin coconut oil using transeterification process with two types of catalysts (homogenous and heterogeneous). The preliminary results shows that, with the addition of homogenous catalyst called Potassium Hydroxide (KOH) with methanol shows much higher activity than that of heterogeneous catalysts, and it shows more similar properties with diesel fuel. The results obtained from the chemical test and physicochemical properties of transesterified biodiesel fuel clearly proves the above-mentioned statement. The chemical tests such as GCMS and FT-IR clearly shows that the biodiesel fuel has sufficient amount of volatile components and functional groups. Then, physicochemical properties include, Fire point, Flashpoint, density, and viscosity were analyzed. Finally, Engine performance and Emission characteristics were analysed to confirm, whether this biodiesel fuel is suitable for diesel engines, without any engine modifications. It was found to be, the transesterified virgin coconut oil biodiesel has similar properties to that of the diesel fuel. From the physiochemical properties and engine performance clearly shows that, coconut oil biodiesel is suitable for diesel engine on blending, at a blending percentage level of 20% with conventional diesel fuel. Since the obtained transesterified biofuel can be used as an alternative fuel for diesel engines. The several journal reports and find outs from experimental investigation clearly depicts that the efficiency of the transesterified biofuel mainly depends upon the amount of catalyst adding and type of catalysts present in the biofuel, whether it is homogenous or heterogeneous catalyst is suitable with methanol. Finally, from the analysis made from biodiesel fuel. Coconut Oil Biodiesel fuel has less emission characteristics than that of the diesel fuels.


2014 ◽  
Vol 1016 ◽  
pp. 582-586 ◽  
Author(s):  
Tayfun Ozgur ◽  
Erdi Tosun ◽  
Ceyla Ozgur ◽  
Gökhan Tuccar ◽  
Kadir Aydın

In this study the performance, exhaust emission characteristics and combustion process of the engine fueled with hydrogen-diesel blends were compared to diesel fuel. Hydrogen was blended with diesel fuel at the volumetric ratios of 5%, 10% and 20%. AVL BOOST software was dedicated to simulate the performance and emission values for various blends of hydrogen with diesel fuel. The simulation results showed that hydrogen addition to diesel fuel improve both engine performance and exhaust emmisions.


Author(s):  
N. V. Mahalakshmi ◽  
R. Karthikeyan

Pinus product (Turpentine) has been proposed as an alternate to petro fuels since the invention of S.I. engine. In general, due to higher volatility, turpentine has been used only in the S.I. engine. But the present work proves that based on the property of turpentine (Table – 1), it is a very good substitute for diesel fuel. The low cetane number of turpentine oil had prevented the use of 100% turpentine oil in diesel engine. The present work explores the performance, emission and combustion characteristics of turpentine diesel blends and its suitability with C.I. engine. The 20% turpentine 80% diesel blend has an equal combustion and performance characteristics with that of diesel fuel. The experimental results show that some of the toxic gases like CO, UBHC and soot are decreased compared to diesel baseline. In particular around 45% to 50% smoke reduction is obtained with higher turpentine blends. Also it proves that 20% addition of turpentine into conventional diesel fuel improve the performance, combustion, and emission to a considerable limit.


Author(s):  
Anita I. Ramírez ◽  
Sibendu Som ◽  
Lisa A. LaRocco ◽  
Timothy P. Rutter ◽  
Douglas E. Longman

There has been an extensive worldwide search for alternate fuels that fit with the existing infrastructure and would thus displace fossil-based resources. In metabolic engineering work at Argonne National Laboratory, strains of fuel have been designed that can be produced in large quantities by photosynthetic bacteria, eventually producing a heavy alcohol called phytol (C20H40O). Phytol’s physical and chemical properties (cetane number, heat of combustion, heat of vaporization, density, surface tension, vapor pressure, etc.) correspond in magnitude to those of diesel fuel, suggesting that phytol might be a good blending agent in compression ignition (CI) engine applications. The main reason for this study was to investigate the feasibility of using phytol as a blending agent with diesel; this was done by comparing the performance and emission characteristics of different blends of phytol (5%, 10%, 20% by volume) with diesel. The experimental research was performed on a single-cylinder engine under conventional operating conditions. Since phytol’s viscosity is much higher than that of diesel, higher-injection-pressure cases were investigated to ensure the delivery of fuel into the combustion chamber was sufficient. The influence of the fuel’s chemical composition on performance and emission characteristics was captured by doing an injection timing sweep. Combustion characteristics as shown in the cylinder pressure trace were comparable for the diesel and all the blends of phytol at each of the injection timings. The 5% and 10% blends show lower CO and similar NOx values. However, the 20% blend shows higher NOx and CO emissions, indicating that the chemical and physical properties have been altered substantially at this higher percentage. The combustion event was depicted by performing high-speed natural luminosity imaging using endoscopy. This revealed that the higher in-cylinder temperatures for the 20% blend are the cause for its higher NOx emissions. In addition, three-dimensional simulations of transient, turbulent nozzle flow were performed to compare the injection and cavitation characteristics of phytol and its blends. Specifically, area and discharge coefficients and mass flow rates of diesel and phytol blends were compared under corresponding engine operating conditions. The conclusion is that phytol may be a suitable blending agent with diesel fuel for CI applications.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Gayatri K. Mistri ◽  
Suresh K. Aggarwal ◽  
Douglas Longman ◽  
Avinash K. Agarwal

Biofuels produced from nonedible sources that are cultivated on marginal lands represent a viable source of renewable and carbon-neutral energy. In this context, biodiesel obtained from Jatropha and Karanja oil seeds have received significant interest, especially in South Asian subcontinent. Both of these fuels are produced from nonedible plant seeds with high oil content, which can be grown on marginal lands. In this research, we have investigated the performance and emission characteristics of Jatropha and Karanja methyl esters (biodiesel) and their blends with diesel. Another objective is to examine the effect of long-term storage on biodiesel's oxidative stability. The biodiesels were produced at Indian Institute of Technology Kanpur, (IIT Kanpur), India, and the engine experiments were performed in a single cylinder, four-stroke, compression ignition engine at Argonne National Laboratory (ANL), Chicago. An endoscope was used to visualize in-cylinder combustion events and examine the soot distribution. The effects of fuel and start of injection (SOI) on engine performance and emissions were investigated. Results indicated that ignition delay was shorter with biodiesel. Consequently, the cylinder pressure and premixed heat release were higher for diesel compared to biodiesel. Engine performance data for biodiesel (J100, K100) and biodiesel blends (J30, K30) showed an increase in brake thermal efficiency (BTE) (10.9%, 7.6% for biodiesel and blend, respectively), brake specific fuel consumption (BSFC) (13.1% and 5.6%), and nitrogen oxides (NOx) emission (9.8% and 12.9%), and a reduction in brake specific hydrocarbon emission (BSHC) (8.64% and 12.9%), and brake specific CO emission (BSCO) (15.56% and 4.0%). The soot analysis from optical images qualitatively showed that biodiesel and blends produced less soot compared to diesel. The temperature profiles obtained from optical imaging further supported higher NOx in biodiesels and their blends compared to diesel. Additionally, the data indicated that retarding the injection timing leads to higher BSFC, but lower flame temperatures and NOx levels along with higher soot formation for all test fuels. The physicochemical properties such as fatty acid profile, cetane number, and oxygen content in biodiesels support the observed combustion and emission characteristics of the fuels tested in this study. Finally, the effect of long-term storage is found to increase the glycerol content, acid value, and cetane number of the two biodiesels, indicating some oxidation of unsaturated fatty acids in the fuels.


Sign in / Sign up

Export Citation Format

Share Document