Numerical Investigation of Wake Control Strategies for Maximizing the Power Generation of Wind Farm

2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Miao Weipao ◽  
Li Chun ◽  
Yang Jun ◽  
Yang Yang ◽  
Xie Xiaoyun

In order to maximize the total power generation of a wind farm, several control strategies based on tilt angle, yaw angle, and cone angle were investigated numerically using computational fluid dynamics (CFD) simulation. The full rotor model (FRM) of 5 MW wind turbine was used to simulate the wake in the wind farm. According to the comparison of different cases' power generations and velocity fields, the result indicates that appropriate strategies based on tilt angle and positive yaw angle have effective improvements on the power output of whole wind farm, but changing cone angle and opposite yaw angle result in negative effects.

2019 ◽  
Author(s):  
Paul Hulsman ◽  
Søren Juhl Andersen ◽  
Tuhfe Göçmen

Abstract. This paper aims to develop fast and reliable surrogate models for yaw-based wind farm control. The surrogates, based on polynomial chaos expansion (PCE), are built using high fidelity flow simulations combined with aeroelastic simulations of the turbine performance and loads. Developing a model for wind farm control is a challenging control problem due to the time-varying dynamics of the wake. Both the power output and the loading of the turbines are included in the optimization of wind farm control strategies. Optimization results performed using two Vestas V27 turbines in a row for a specific atmospheric condition suggest that a power gain of almost 3 % ± 1 % can be achieved at close spacing by yawing the upstream turbine more than 15°. At larger spacing, the power gain the optimization shows that yawing is not beneficial as the optimization reverts to normal operation. Furthermore, it was also identified that a reduction of the equivalent loads was obtained at the cost of power production. The total power gains are discussed in relation to the associated model errors and the uncertainty of the surrogate models used in the optimization, and the implication for wind farm control.


Author(s):  
Anh Tuan Doan ◽  
Dinh Thanh Viet ◽  
Minh Quan Duong

In this paper, economic load dispatch (ELD) problem is solved by applying a suggested improved particle swarm optimization (IPSO) for reaching the lowest total power generation cost from wind farms (WFs) and thermal units (TUs). The suggested IPSO is the modified version of Particle swarm optimization (PSO) by changing velocity and position updates. The five best solutions are employed to replace the so-far best position of each particle in velocity update mechanism and the five best solutions are used to replace previous position of each particle in position update. In addition, constriction factor is also used in the suggested IPSO. PSO, constriction factor-based PSO (CFPSO) and bat optimization algorithm (BOA) are also run for comparisons. Two systems are used to run the four methods. The first system is comprised of nine TUs with multiple fuels and one wind farm. The second system is comprised of eight TUs with multiple fuels and two WFs. From the comparisons of results, IPSO is much more powerful than three others and it can find optimal power generation with the lowest total power generation cost.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1266 ◽  
Author(s):  
Tanvir Ahmad ◽  
Abdul Basit ◽  
Muneeb Ahsan ◽  
Olivier Coupiac ◽  
Nicolas Girard ◽  
...  

This paper presents, with a live field experiment, the potential of increasing wind farm power generation by optimally yawing upstream wind turbine for reducing wake effects as a part of the SmartEOLE project. Two 2MW turbines from the Le Sole de Moulin Vieux (SMV) wind farm are used for this purpose. The upstream turbine (SMV6) is operated with a yaw offset ( α ) in a range of − 12 ° to 8° for analysing the impact on the downstream turbine (SMV5). Simulations are performed with intelligent control strategies for estimating optimum α settings. Simulations show that optimal α can increase net production of the two turbines by more than 5%. The impact of α on SMV6 is quantified using the data obtained during the experiment. A comparison of the data obtained during the experiment is carried out with data obtained during normal operations in similar wind conditions. This comparison show that an optimum or near-optimum α increases net production by more than 5% in wake affected wind conditions, which is in confirmation with the simulated results.


Author(s):  
Zunce Wang ◽  
Sen Li ◽  
Fengxia Lv ◽  
Yan Xu ◽  
Jinlong Zhang

The technology of Down-hole Gas Liquid Separation and Water Re-injection (DGLSWR) is an economical and effective method to solve gas well fluid accumulation. The separation performance of designed Down-hole Gas Liquid Separator (DGLS) is very important for DGLSWR systems applications. The principle of work and Characteristics of DGLSWR systems are introduced in this paper. Separation performance of DGLS was studied using computational fluid dynamics (CFD) simulation combining laboratory experiment. Relations of main operating parameters, such as flow rate and gas liquid ratio with pressure drop were studied. The effect of flow rate, gas liquid ratio and main structural parameters such as cone angle and exhaust on DGLS separation performance was also studied. Appropriate structure and operating parameters were determined. Field tests indicated satisfactory results as well.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1164 ◽  
Author(s):  
Julian Barreiro-Gomez ◽  
Carlos Ocampo-Martinez ◽  
Fernando Bianchi ◽  
Nicanor Quijano

In wind farms, the interaction between turbines that operate close by experience some problems in terms of their power generation. Wakes caused by upstream turbines are mainly responsible of these interactions, and the phenomena involved in this case is complex especially when the number of turbines is high. In order to deal with these issues, there is a need to develop control strategies that maximize the energy captured from a wind farm. In this work, an algorithm that uses multiple estimated gradients based on measurements that are classified by using a simple distributed population-games-based algorithm is proposed. The update in the decision variables is computed by making a superposition of the estimated gradients together with the classification of the measurements. In order to maximize the energy captured and maintain the individual power generation, several constraints are considered in the proposed algorithm. Basically, the proposed control scheme reduces the communications needed, which increases the reliability of the wind farm operation. The control scheme is validated in simulation in a benchmark corresponding to the Horns Rev wind farm.


Author(s):  
Souma Chowdhury ◽  
Achille Messac ◽  
Jie Zhang ◽  
Luciano Castillo ◽  
Jose Lebron

This paper presents a new method (the Unrestricted Wind Farm Layout Optimization (UWFLO)) of arranging turbines in a wind farm to achieve maximum farm efficiency. The powers generated by individual turbines in a wind farm are dependent on each other, due to velocity deficits created by the wake effect. A standard analytical wake model has been used to account for the mutual influences of the turbines in a wind farm. A variable induction factor, dependent on the approaching wind velocity, estimates the velocity deficit across each turbine. Optimization is performed using a constrained Particle Swarm Optimization (PSO) algorithm. The model is validated against experimental data from a wind tunnel experiment on a scaled down wind farm. Reasonable agreement between the model and experimental results is obtained. A preliminary wind farm cost analysis is also performed to explore the effect of using turbines with different rotor diameters on the total power generation. The use of differing rotor diameters is observed to play an important role in improving the overall efficiency of a wind farm.


Author(s):  
Hidenori Arisawa ◽  
Motohiko Nishimura ◽  
Hideyuki Imai ◽  
Tatsuhiko Goi

In recent years, the demand for power generation capacity has increased considerably due to the electric drive of air conditioners and so on in the engines of civil aircraft. Therefore, it is estimated that power losses may increase in the gearbox because of generators and pumps that in turn augment fuel consumption. To understand the phenomena of losses in the gearbox and to reduce these losses, Computational Fluid Dynamics (CFD) simulation that analyzes oil churning loss and windage loss was developed and improvements were made to the shroud of bevel gears. The CFD agreed with experimental results on a bevel gearbox of a 100-seater aircraft. And, it was shown that the suppression of momentum transfer from the rotating gears to oil clusters is of importance. In addition, it was revealed that the loss was reduced up to 36% compared to non-shrouded gears by shrouding in the experiments. This CFD simulation can be applied to many types of gearboxes that have spur gears, bearings and seals.


2021 ◽  
Vol 13 (16) ◽  
pp. 8985
Author(s):  
Shih-Chieh Liao ◽  
Shih-Chieh Chang ◽  
Tsung-Chi Cheng

Renewable energy is produced using renewable natural resources, including wind power. The Taiwan government aims to have renewable energy account for 20% of its total power supply by 2025, in which offshore wind power plays an important role. This paper explores the application of index insurance to renewable energy for offshore wind power in Taiwan. We employ autoregressive integrated moving average models to forecast power generation on a monthly and annual basis for the Changhua Demonstration Offshore Wind Farm. These predictions are based on an analysis of 39 years of hourly wind speed data (1980–2018) from the Modern-Era Retrospective analysis for Research and Applications, Version 2, of the National Aeronautics and Space Administration. The data analysis and forecasting models describe the methodology used to design the insurance contract and its index for predicting offshore wind power generation. We apply our forecasting results to insurance contract pricing.


Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 33
Author(s):  
Amahjour Narjisse ◽  
Abdellatif Khamlichi

The performance of a wind turbine depends on the characteristics of the airflow as well as the conditions of the atmospheric boundary layer (ABL). To evaluate accurately the amount of wind energy, it is required to have the exact height distribution of wind speed for the considered implementation site of a wind turbine. In this paper, computational fluid dynamics (CFD) simulation predictions provided by the standard k-ε turbulence model under neutral conditions were examined. The objective is to investigate the influence of hill slopes in the microscale wind farm on the airflow velocity to optimize the location of wind turbines. The results were validated by RUSHIL wind tunnel data and were compared with flat terrain.


Sign in / Sign up

Export Citation Format

Share Document