On the Influence of a Hubside Exducer Cavity and Bleed Air in a Close-Coupled Centrifugal Compressor Stage

2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Peter Kaluza ◽  
Christian Landgraf ◽  
Philipp Schwarz ◽  
Peter Jeschke ◽  
Caitlin Smythe

In aero-engine applications, centrifugal compressors are often close-coupled with their respective diffusers to increase efficiency at the expense of a reduced operating range. The aim of this paper is to show that state-of-the art steady-state computational fluid dynamics (CFD) simulations can model a hubside cavity between an impeller and a close-coupled diffuser and to enhance the understanding of how the cavity affects performance. The investigated cavity is located at the impeller trailing edge, and bleed air is extracted through it. Due to geometrical limitations, the mixing plane is located in the cavity region. Therefore, the previous analyses used only a cut (“simple”) model of the cavity. With the new, “full” cavity model, the region inside the cavity right after the impeller trailing edge is not neglected anymore. The numerical setup is validated using the experimental data gathered on a state-of-the art centrifugal compressor test-rig. For the total pressure field in front of the diffuser throat, a clear improvement is achieved. The results presented reveal a drop in stage efficiency by 0.5%-points caused by a new loss mechanism at the impeller trailing edge. On the hubside, the fundamentally different interaction of the cavity with the coreflow increases the losses in the downstream components resulting in the mentioned stage efficiency drop. Finally, varying bleed air extraction is investigated with both cavity models. Only the full cavity (FC) model captures the changes measured in the experiment.

Author(s):  
Peter Kaluza ◽  
Christian Landgraf ◽  
Philipp Schwarz ◽  
Peter Jeschke ◽  
Caitlin Smythe

In aero-engine applications, centrifugal compressors are often close-coupled with their respective diffusers to increase efficiency at the expense of a reduced operating range. The aim of this paper is to show that state-of-the art steady state CFD simulations can model a hubside cavity between an impeller and a close-coupled diffuser and to enhance the understanding of how the cavity affects performance. The investigated cavity is located at the impeller trailing edge and bleed air is extracted through it. Due to geometrical limitations the mixing plane is located in the cavity region. Therefore, previous analyses used only a cut (“simple”) model of the cavity. With the new, “full” cavity model, the region inside the cavity right after the impeller trailing edge is not neglected anymore. The numerical setup is validated using experimental data gathered on a state-of-the art centrifugal compressor test-rig. For the total pressure field in front of the diffuser throat a clear improvement is achieved. The results presented reveal a drop in stage efficiency by 0.5%-points caused by a new loss mechanism at the impeller trailing edge. On the hubside, the fundamentally different interaction of the cavity with the coreflow increases the losses in the downstream components resulting in the mentioned stage efficiency drop. Finally, varying bleed air extraction is investigated with both cavity models. Only the full cavity model captures the changes measured in the experiment.


2001 ◽  
Author(s):  
D. Lee Hill ◽  
Zheji Liu ◽  
Jim Sorokes

Abstract The use of a virtual test rig to numerically test turbomachinery hardware can be extremely cost effective if the results obtained are physically correct and relatively accurate. The literature clearly shows that a lot of emphasis has been placed on single component validation optimized for a single operation point. There are few studies, however, that have clearly documented the numerical issues surrounding the modeling of a complete stage of a centrifugal compressor across its operating range. This effort uses a generic low flow stage design to demonstrate the accuracy to expect from the current state-of-the-art technology found in both commercial and research computational fluid dynamics (CFD) software. Even effects stemming from secondary flow paths are considered in this study. For design and off-design operation toward surge, 360-degree transient calculations are compared to those obtained from using the steady state fixed-rotor approximation. Finally, all work is ultimately compared to detailed test data obtained from single stage testing.


2017 ◽  
Vol 9 (2) ◽  
pp. 168781401769069 ◽  
Author(s):  
Tore Fischer ◽  
Joerg R Seume

A new centrifugal compressor impeller design approach is presented, focusing on electrically driven compressors for gasoline engine and fuel cell applications. The performance and mechanical integrity are evaluated based on numerical simulations. Additionally, the numerical model is applied to several variations of the diffuser and volute geometries, in order to evaluate stage characteristics for diffuser area ratios of 110% and 150%, volute area ratios from 60% to 90%, and diffuser pinch ratios from 60% to 80%. The preliminary performance results show the capability to achieve a flow range comparable to a larger state-of-the-art impeller, with minor penalties regarding stage efficiency and near surge operating stability.


2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Y. Marchesse ◽  
C. Changenet ◽  
F. Ville ◽  
P. Velex

In this paper, a computational fluid dynamics (CFD) code is applied to two- and three-dimensional simulations of windage power loss generated by spur gears rotating in air. Emphasis is placed on the various meshes associated with the finite volume method and on the choice of turbulence model. Comparing CFD predictions with the power losses measured on a specific test rig, it is shown that the fluid ejection in the radial direction must be included in order to reproduce the experimental evidence. The relative importance of the losses generated by the gear front and rear faces along with those due to the teeth is discussed. The volumetric flow rate expelled by the teeth is analyzed and the influence of flanges is highlighted.


Author(s):  
Holger Franz ◽  
Christoph Rube ◽  
Matthias Wedeking ◽  
Peter Jeschke

Steady-state simulations of a high-flow centrifugal compressor stage with return channel for industrial applications are carried out to determine the flow conditions in a new compressor test rig at the RWTH Aachen University. Overall performance predictions, conducted by means of CFD simulations, will be shown and discussed in this paper. Furthermore, a detailed analysis of the stage components is presented, providing an insight into the flow phenomena responsible for the compressor performance. Thereby, the analysis focuses on the return channel. The compressor has a shrouded impeller with 3D-twisted blades, operating at a high flow coefficient and moderate pressure ratios, as usual for multistage single-shaft compressors. The complete computational domain consists of an inlet duct, the impeller, a vaneless diffuser and return channel with bends to guide the flow. All CFD simulations have been carried out in advance of the test rig construction. The results of the simulations have been used to define the measurement locations within the test rig. Within this paper, the predicted flow phenomena in the return channel, which are strongly three-dimensional, are detailed and analyzed against the backdrop of their origin and their contribution to the overall losses. Furthermore, the available measurement results of the overall compressor performance are compared to the numerical simulations to validate the numerical setup. The objective of this paper is to give a detailed analysis of the flow in the return channel of a new compressor test rig built up at the Institute of Jet Propulsion and Turbomachinery of the RWTH Aachen University. The investigation is conducted to get an insight into the formation processes of the dominant flow phenomena affecting the overall stage performance. These investigations can form the basis for developing new strategies for return channel improvements.


2003 ◽  
Vol 125 (2) ◽  
pp. 293-301 ◽  
Author(s):  
F. Bakir ◽  
S. Kouidri ◽  
R. Noguera ◽  
R. Rey

The aim of this paper is to analyze, from experimental results, the influence of the shape of the leading edge and its sharpening on the cavitating behavior of an inducer. The studied inducer is designed according to a methodology developed at LEMFI. Successive cutting and sharpening (four cuts, which modify up to 20 percent of the blade chord at the tip), were made to modify the shape of the leading edge. For the various geometries, the experimental results obtained on the LEMFI test rig are presented as follows. Noncavitating Regime: Overall performances at 1450 rpm. Cavitating Regime: (1) The development of the cavitation versus the cavitation number, (2) the description of the various cavitation pictures, and (3) the pressure fluctuations measured at the wall at 150 mm downstream of the trailing edge for various flow rates and inlet pressures. The CFD simulations carried out under CFX-Blade Gen+ on this range of inducers are presented to explain certain aspects observed.


Author(s):  
Benjamin Wilkosz ◽  
Markus Zimmermann ◽  
Philipp Schwarz ◽  
Peter Jeschke ◽  
Caitlin Smythe

The present work forms part of a research project of the Institute of Jet Propulsion and Turbomachinery at the RWTH Aachen University in collaboration with GE Aviation. The subject is the detailed numerical analysis of the unsteady flow field focusing on the interaction between the impeller and the passage diffuser of a close-coupled transsonic centrifugal compressor used in an aero engine. The centrifugal compressor investigated is characterized by a close-coupled impeller and passage diffuser with a radial gap of only 3.6%. The close coupling tends to provide a high aerodynamic efficiency but simultaneously cause a high unsteady interaction between the impeller and the diffuser. These unsteady effects can have a significant impact on the performance of both components [1,2] and present a challenge to state-of-the-art numerical methods. With increasing compressor efficiency, the more important it is to have a understanding of the detailed unsteady flow physics. Experimental data was obtained from a state-of-the art centrifugal compressor test rig located at the Institute of Jet Propulsion [3]. Steady and unsteady pressure measurements within the impeller and diffuser are used to gain detailed information on the temporal, time-averaged and spectral pressure distributions within the stage to validate the CFD. The work presented shows the unsteady phenomena caused by the interaction as well as the location and propagation of these phenomena within the centrifugal stage. Within the impeller, the exducer is in first order excited by the BPF of the diffuser, whereas in the diffuser both the BPF, as well as the PPF, are present up until the end of the pipe-diffuser. Significant effects on the integral component performance could only be identified for the impeller. Special focus is paid to evaluate the diffuser upstream pressure field, since this is the major source of unsteadiness within the impeller. The performance of the rotor decreases due to the unsteady interaction. This effect is traced back to the unsteady tip-clearance flow, in which the time-averaged mass transport decreases, whereas the specific entropy production increases in a nonlinear way. Within the diffuser, local effects counteracting with respect to the integral performance are found. In front of the throat, there is less decay in total pressure, as a result of tangentially expanding pressure waves. Within the passage an decrease in flow uniformity in the unsteady flow is identified as the reason for the lower diffusion up until the throat and higher losses within the downstream diffuser passage.


Author(s):  
P. M. Came ◽  
C. J. Robinson

Centrifugal compressors are used in a wide range of applications in which performance and mechanical integrity are invariably among the paramount design objectives. There is therefore continuing interest in the development of a sound understanding of the relevant physical phenomena and in the systematic application of the knowledge base that is the forerunner of the established design procedures. The paper reviews centrifugal compressor design methods that are commonly used in industry and reviews the underlying engineering science supporting the design practices. The design process, starting with the preliminary design and its reliance on empirical rules through to state-of-the-art aerodynamic design using computational fluid dynamics (CFD), is presented. The essentials of impeller mechanical design are also included in the paper.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
B. Mischo ◽  
P. Jenny ◽  
Y. Bidaut ◽  
N. Fonzi ◽  
D. Hermann ◽  
...  

Abstract Unshrouded industrial centrifugal compressor impellers operate at high rotational speeds and volume flow rates. Under such conditions, impeller blade excitation is dominated by high frequency interaction with stationary parts, i.e., vaned diffusers or inlet guide vanes. In a previous study conducted on two full compression units of the original equipment manufacturer (OEM), the authors identified, characterized, and quantified resonant blade vibration caused by the interaction of the impeller blades with rotating stall cells during severe off-design conditions. This caused significant dynamic stress in the blades. In a follow-up study, this phenomenon was reproduced successfully experimentally under representative off-design conditions in a downscaled test rig and numerically with unsteady computational fluid dynamics (CFD) and structural mechanical finite element method (FEM) analysis. The gained knowledge was translated into a new diffuser design philosophy, based on sectorwise circumferential variation of the leading edge angle. This paper presents the patented philosophy, which is experimentally verified on the same test rig configuration in terms of flow path geometry and measurement equipment that was used in the mentioned prior study to assess resonant blade interaction. The results confirm the design aims: rotating stall onset was delayed without affecting the aerodynamic performance of the stage. Resonant blade interaction with rotating stall observed in the baseline diffuser could not be avoided with the two new diffuser designs. However, with the two new diffusers, the induced mechanical stresses in the impeller and the excitability were reduced by up to 12%.


Author(s):  
B. Mischo ◽  
P. Jenny ◽  
Y. Bidaut ◽  
N. Fonzi ◽  
D. Hermann ◽  
...  

Abstract Unshrouded industrial centrifugal compressor impellers operate at high rotational speeds and volume flow rates. Under such conditions impeller blade excitation is dominated by high frequency interaction with stationary parts, i.e. vaned diffusers or inlet guide vanes. In a previous study conducted on two full compression units of the original equipment manufacturer (OEM), the authors also identified, characterized and quantified resonant blade vibration caused by the interaction of the impeller blades with sub-synchronous rotating stall cells during severe off-design conditions. The resonant impeller excitation lead to significant dynamic stress in the blades. In a follow-up study the authors have reproduced this phenomenon under representative off-design conditions in a downscaled test rig and successfully reproduced the phenomenon with unsteady Computational Fluid Dynamics (CFD) and structural mechanical Finite Element Method (FEM) analysis. The gained knowledge of these studies was translated into a new diffuser design philosophy, based on a sectorwise circumferential variation of the leading edge angle. In this paper, the patented philosophy by the OEM is presented and verified experimentally on the same test rig configuration in terms of flow path geometry and measurement equipment that was used in the mentioned prior study to assess resonant blade interaction. The results confirm the design aims: rotating stall onset was delayed without affecting the aerodynamic performance of the stage. Resonant blade interaction with rotating stall observed in the baseline diffuser could not be avoided with the two new diffuser designs. However, with the two new diffusers, the induced mechanical stresses in the impeller and the excitability were reduced by up to 12%.


Sign in / Sign up

Export Citation Format

Share Document