Disturbance Observer-Based Pitch Control of Wind Turbines for Enhanced Speed Regulation

Author(s):  
Yuan Yuan ◽  
X. Chen ◽  
J. Tang

Time-varying unknown wind disturbances influence significantly the dynamics of wind turbines. In this research, we formulate a disturbance observer (DOB) structure that is added to a proportional-integral-derivative (PID) feedback controller, aiming at asymptotically rejecting disturbances to wind turbines at above-rated wind speeds. Specifically, our objective is to maintain a constant output power and achieve better generator speed regulation when a wind turbine is operated under time-varying and turbulent wind conditions. The fundamental idea of DOB control is to conduct internal model-based observation and cancelation of disturbances directly using an inner feedback control loop. While the outer-loop PID controller provides the basic capability of suppressing disturbance effects with guaranteed stability, the inner-loop disturbance observer is designed to yield further disturbance rejection in the low frequency region. The DOB controller can be built as an on–off loop, that is, independent of the original control loop, which makes it easy to be implemented and validated in existing wind turbines. The proposed algorithm is applied to both linearized and nonlinear National Renewable Energy Laboratory (NREL) offshore 5-MW baseline wind turbine models. In order to deal with the mismatch between the linearized model and the nonlinear turbine, an extra compensator is proposed to enhance the robustness of augmented controller. The application of the augmented DOB pitch controller demonstrates enhanced power and speed regulations in the above-rated region for both linearized and nonlinear plant models.


Author(s):  
Yuan Yuan ◽  
Xu Chen ◽  
Jiong Tang

Disturbance observer based (DOB) control has been implemented in motion control to reject unknown or time-varying disturbances. In this research, an internal model-based disturbance observer (DOB) design combined with a PID type feedback controller is formulated for wind turbine speed and power regulation. The DOB controller facilitates model-based estimation and cancellation of disturbance using an inner feedback control loop. The disturbance observer combined with a compensator is further designed to deal with the model mismatch. The proposed method is applied to National Renewable Energy laboratory (NREL) offshore 5-MW wind turbine. Our case studies show that the DOB controller can achieve improved speed and power regulation compared to the baseline PID controller, and exhibit excellent robustness under different turbulent wind fields.



Author(s):  
B. P. Khozyainov

The article carries out the experimental and analytical studies of three-blade wind power installation and gives the technique for measurements of angular rate of wind turbine rotation depending on the wind speeds, the rotating moment and its power. We have made the comparison of the calculation results according to the formulas offered with the indicators of the wind turbine tests executed in natural conditions. The tests were carried out at wind speeds from 0.709 m/s to 6.427 m/s. The wind power efficiency (WPE) for ideal traditional installation is known to be 0.45. According to the analytical calculations, wind power efficiency of the wind turbine with 3-bladed and 6 wind guide screens at wind speedsfrom 0.709 to 6.427 is equal to 0.317, and in the range of speed from 0.709 to 4.5 m/s – 0.351, but the experimental coefficient is much higher. The analysis of WPE variations shows that the work with the wind guide screens at insignificant average air flow velocity during the set period of time appears to be more effective, than the work without them. If the air flow velocity increases, the wind power efficiency gradually decreases. Such a good fit between experimental data and analytical calculations is confirmed by comparison of F-test design criterion with its tabular values. In the design of wind turbines, it allows determining the wind turbine power, setting the geometrical parameters and mass of all details for their efficient performance.



Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.



2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yiannis A. Katsigiannis ◽  
George S. Stavrakakis ◽  
Christodoulos Pharconides

This paper examines the effect of different wind turbine classes on the electricity production of wind farms in two areas of Cyprus Island, which present low and medium wind potentials: Xylofagou and Limassol. Wind turbine classes determine the suitability of installing a wind turbine in a particulate site. Wind turbine data from five different manufacturers have been used. For each manufacturer, two wind turbines with identical rated power (in the range of 1.5 MW–3 MW) and different wind turbine classes (IEC II and IEC III) are compared. The results show the superiority of wind turbines that are designed for lower wind speeds (IEC III class) in both locations, in terms of energy production. This improvement is higher for the location with the lower wind potential and starts from 7%, while it can reach more than 50%.



2020 ◽  
Vol 1 (2) ◽  
pp. 61-67
Author(s):  
Mohammad Rizqi Saputra ◽  
Nur Kholis ◽  
Mohammad Munib Rosadi

Abstract Wind is a renewable mechanical energy source that can be used as an energy source because the energy from the wind can be used to drive wind turbines. Savonius wind turbine type L is a tool to convert wind energy into electricity with a simple construction and can work with low wind speeds. The purpose of this study was to determine the effect of differences in diameter and number of blades on the power produced. The method used is a simulation method with an artificial wind source. With a wind speed of 8 m/s. The data analysis technique used is 2-way ANOVA using the SPSS application. Variations used are 20 cm and 40 cm in diameter and the number of blades 2 and 4 . The result is a wind turbine with a variation of 40 cm and 4 blades capable of producing the best output which produces 350.98 RPM voltage of 11.64 volts current of 0.144 amperes and power of 1,676 watts. As for BHP, torque, and turbine efficiency with a variation of 40 cm and 4 blades capable of producing the best output where the generated BHP is 3.352 watts, torque 0.091 N / m efficiency 2.17. For the results of calculations with SPSS wind turbines with a diameter variation of 40 cm and 4 blades, the biggest power is 1,744 watts and for BHP produces 3.3520 watts and the efficiency reaches 2.17%. Keyword : Diameter, number of blade, Performance Abstrak Angin adalah sumber energi mekanik yang bisa diperbaharui sehingga dapat dimanfaatkan sebagai sumber energi karena dapat digunakan untuk menggerakkan turbin angin. Turbin angin savonius tipe L merupakan alat untuk mengubah energi angin menjadi listrik dengan konstruksi yang sederhana dan dapat bekerja dengan kecepatan angin yang rendah. Tujuan penelitian ini untuk mengetahui pengaruh perbedaan diameter dan jumlah sudu terhadap unjuk kerja yang dihasilkan. Metode yang digunakan adalah metode simulasi dengan sumber angin buatan. Dengan kecepatan angin 8 m/s. Teknik analisis data yang digunakan adalah ANOVA 2 arah dengan menggunakan aplikasi SPSS. Variasi yang digunakan adalah diameter 20 cm dan 40 cm serta jumlah sudu 2 dan 4. Hasilnya turbin angin dengan variasi 40 cm dan 4 sudu mampu menghasilkan output terbaik yang dimana menghasilkan RPM 350,98 tegangan 11,64 volt arus 0,144 ampere dan daya 1,676 watt. Sedangkan untuk BHP, torsi, dan efisensi turbin dengan variasi 40 cm dan 4 sudu mampu menghasilkan output yang terbaik dimana BHP yang dihasilkan adalah 3,352 watt, torsi 0,091 N/m efisisensi 2,17. Untuk hasil perhitungan dengan SPSS turbin angin dengan variasi diameter 40 cm dan 4 sudu menghasilkan daya terbesar yakni 1,744 watt dan untuk BHP menghasilkan 3,3520 watt dan efisiensinya mencapai 2,17 % untuk torsi tertinggi dicapai turbin variasi 40 cm 2 sudu dengan torsi 0,116.   Kata kunci : diameter, jumlah sudu, unjuk kerja



2021 ◽  
Vol 104 ◽  
pp. 83-88
Author(s):  
Rahmat Wahyudi ◽  
Diniar Mungil Kurniawati ◽  
Alfian Djafar

The potential of wind energy is very abundant but its utilization is still low. The effort to utilize wind energy is to utilize wind energy into electrical energy using wind turbines. Savonius wind turbines have a very simple shape and construction, are inexpensive, and can be used at low wind speeds. This research aims to determine the effect of the slot angle on the slotted blades configuration on the performance produced by Savonius wind turbines. Slot angle variations used are 5o ,10o , and 15o with slotted blades 30% at wind speeds of 2,23 m/s to 4,7 m/s using wind tunnel. The result showed that a small slot angle variation of 5o produced better wind turbine performance compared to a standard blade at low wind speeds and a low tip speed ratio.



2020 ◽  
Vol 12 (18) ◽  
pp. 7818
Author(s):  
Jose Alberto Moleón Baca ◽  
Antonio Jesús Expósito González ◽  
Candido Gutiérrez Montes

This paper presents a numerical and experimental analysis of the patent of a device to be used in vertical-axis wind turbines (VAWTs) under extreme wind conditions. The device consists of two hemispheres interconnected by a set of conveniently implemented variable section ducts through which the wind circulates to the blades. Furthermore, the design of the cross-section of the ducts allows the control of the wind speed inside the device. These ducts are intended to work as diffusers or nozzles, depending on the needs of the installation site. Simulations were performed for the case of high-speed external wind, for which the ducts act as diffusers to reduce wind speed and maintain a well-functioning internal turbine. Four different patent designs were analyzed, focusing on turbine performance and generated power. The results indicate that the patent allows the generation of electric power for a greater range of wind speeds than with a normal wind turbine. The results support that this patent may be a good alternative for wind power generation in geographic areas with extreme weather conditions or with maintained or strong gusty wind. Experimental tests were carried out on the movement of the blades using the available model. Finally, the power curve of the model of this wind turbine was obtained.



Author(s):  
Sayem Zafar ◽  
Mohamed Gadalla

A small horizontal axis wind turbine rotor was designed and tested with aerodynamically efficient, economical and easy to manufacture blades. Basic blade aerodynamic analysis was conducted using commercially available software. The blade span was constrained such that the complete wind turbine can be rooftop mountable with the envisioned wind turbine height of around 8 m. The blade was designed without any taper or twist to comply with the low cost and ease of manufacturing requirements. The aerodynamic analysis suggested laminar flow airfoils to be the most efficient airfoils for such use. Using NACA 63-418 airfoil, a rectangular blade geometry was selected with chord length of 0.27[m] and span of 1.52[m]. Glass reinforced plastic was used as the blade material for low cost and favorable strength to weight ratio with a skin thickness of 1[mm]. Because of the resultant velocity changes with respect to the blade span, while the blade is rotating, an optimal installed angle of attack was to be determined. The installed angle of attack was required to produce the highest possible rotation under usual wind speeds while start at relatively low speed. Tests were conducted at multiple wind speeds with blades mounted on free rotating shaft. The turbine was tested for three different installed angles and rotational speeds were recorded. The result showed increase in rotational speed with the increase in blade angle away from the free-stream velocity direction while the start-up speeds were found to be within close range of each other. At the optimal angle was found to be 22° from the plane of rotation. The results seem very promising for a low cost small wind turbine with no twist and taper in the blade. The tests established that non-twisted wind turbine blades, when used for rooftop small wind turbines, can generate useable electrical power for domestic consumption. It also established that, for small wind turbines, non-twisted, non-tapered blades provide an economical yet productive alternative to the existing complex wind turbine blades.



2001 ◽  
Vol 123 (4) ◽  
pp. 290-295 ◽  
Author(s):  
Ken Chaney ◽  
Alfred J. Eggers, ◽  
Patrick J. Moriarty ◽  
William E. Holley

Accurate prediction of both the center of thrust location and the magnitude of the thrust on a rotor disk are critical to satisfactory modeling of the yawing of small wind turbines to large angles to passively control overshoots in power and loads at higher wind speeds. Of the two, the prediction of the center of thrust location upwind of the center of a yawed rotor disk appears to be the most uncertain and potentially in serious error. This error is due to uncertainties in skewed wake effects on the thrust distribution on the disk. Three skewed wake models are examined to better understand the potential sources of error. First is the dynamic inflow model originally developed for helicopters, and second is a modification of this model developed for wind turbines. Third is an earlier cylindrical vortex wake model which pioneered the study of skewed wake effects for helicopters, and which can be generalized for wind turbine applications. It is concluded that this generalized model and the original dynamic inflow model are the most promising for small wind turbine applications, and their predictions of center of thrust and blade root moments are compared for an idealized rotor. The focus is on static equilibrium loads, and note is taken of the potential importance of accounting for expanding wake effects. The basic results of the study are applicable to large as well as small wind turbine rotors.



2014 ◽  
Vol 13 (6) ◽  
pp. 660-670 ◽  
Author(s):  
Sungmin Kim ◽  
Douglas E Adams ◽  
Hoon Sohn ◽  
Gustavo Rodriguez-Rivera ◽  
Noah Myrent ◽  
...  

This article presents a new technique for identifying cracks in wind turbine blades undergoing operational loads using the Vibro-Acoustic Modulation technique. Vibro-Acoustic Modulation utilizes a low-frequency pumping excitation signal in conjunction with a high-frequency probing excitation signal to create the modulation that is used to identify cracks. Wind turbines provide the ideal conditions in which Vibro-Acoustic Modulation can be utilized because wind turbines experience large low-frequency structural vibrations during operation which can serve as the low-frequency pumping excitation signal. In this article, the theory for the vibro-acoustic technique is described, and the proposed crack detection technique is demonstrated with Vibro-Acoustic Modulation experiments performed on a small Whisper 100 wind turbine in operation. The experimental results are also compared with two other conventional vibro-acoustic techniques in order to validate the new technique. Finally, a computational study is demonstrated for choosing a proper probing signal with a finite element model of the cracked blade to maximize the sensitivity of the technique for detecting cracks.



Sign in / Sign up

Export Citation Format

Share Document