Numerical Study of Turbulent Helical Pipe Flow With Comparison to the Experimental Results

2017 ◽  
Vol 139 (9) ◽  
Author(s):  
Anup Kumer Datta ◽  
Yasutaka Hayamizu ◽  
Toshinori Kouchi ◽  
Yasunori Nagata ◽  
Kyoji Yamamoto ◽  
...  

Turbulent flow through helical pipes with circular cross section is numerically investigated comparing with the experimental results obtained by our team. Numerical calculations are carried out for two helical circular pipes having different pitches and the same nondimensional curvature δ (=0.1) over a wide range of the Reynolds number from 3000 to 21,000 for torsion parameter β (=torsion /2δ  = 0.02 and 0.45). We numerically obtained the secondary flow, the axial flow and the intensity of the turbulent kinetic energy by use of three turbulence models incorporated in OpenFOAM. We found that the change to fully developed turbulence is identified by comparing experimental data with the results of numerical simulations using turbulence models. We also found that renormalization group (RNG) k−ε turbulence model can predict excellently the fully developed turbulent flow with comparison to the experimental data. It is found that the momentum transfer due to turbulence dominates the secondary flow pattern of the turbulent helical pipe flow. It is interesting that torsion effect is more remarkable for turbulent flows than laminar flows.

1990 ◽  
Vol 112 (2) ◽  
pp. 205-211 ◽  
Author(s):  
N. Hur ◽  
S. Thangam ◽  
C. G. Speziale

The pressure driven, fully developed turbulent flow of an incompressible viscous fluid in curved ducts of square cross-section is studied numerically by making use of a finite volume method. A nonlinear K -1 model is used to represent the turbulence. The results for both straight and curved ducts are presented. For the case of fully developed turbulent flow in straight ducts, the secondary flow is characterized by an eight-vortex structure for which the computed flowfield is shown to be in good agreement with available experimental data. The introduction of moderate curvature is shown to cause a substantial increase in the strength of the secondary flow and to change the secondary flow pattern to either a double-vortex or a four-vortex configuration.


1989 ◽  
Vol 203 ◽  
pp. 289-305 ◽  
Author(s):  
M. Germano

In this paper the Dean (1928) equations are extended to the case of a helical pipe flow, and it is shown that they depend not only on the Dean number K but also on a new parameter λ/[Rscr ] where λ is the ratio of the torsion τ to the curvature κ of the pipe axis and [Rscr ] the Reynolds number referred in the usual way to the pipe radius a and to the equivalent maximum speed in a straight pipe under the same axial pressure gradient. The fact that the torsion has no first-order effect on the flow is confirmed, but it is shown that this is peculiar to a circular cross-section. In the case of an elliptical cross-section there is a first-order effect of the torsion on the secondary flow, and in the limit λ/[Rscr ] → ∞ (twisted pipes, provided only with torsion), the first-order ‘displacement’ effect of the walls on the secondary flow, analysed in detail by Choi (1988), is recovered.Different systems of coordinates and different orders of approximations have recently been adopted in the study of the flow in a helical pipe. Thus comparisons between the equations and the results presented in different reports are in some cases difficult and uneasy. In this paper the extended Dean equations for a helical pipe flow recently derived by Kao (1987) are converted to a simpler form by introducing an appropriate modified stream function, and their equivalence with the present set of equations is recovered. Finally, the first-order equivalence of this set of equations with the equations obtained by Murata et al. (1981) is discussed.


2009 ◽  
Vol 131 (12) ◽  
Author(s):  
B. Timité ◽  
M. Jarrahi ◽  
C. Castelain ◽  
H. Peerhossaini

This work concerns the manipulation of a twisted curved-pipe flow for mixing enhancement. Previous works have shown that geometrical perturbations to a curved-pipe flow can increase mixing and heat transfer by chaotic advection. In this work the flow entering the twisted pipe undergoes a pulsatile motion. The flow is studied experimentally and numerically. The numerical study is carried out by a computational fluid dynamics (CFD) code (FLUENT 6) in which a pulsatile velocity field is imposed as an inlet condition. The experimental setup involves principally a “Scotch-yoke” pulsatile generator and a twisted curved pipe. Laser Doppler velocimetry measurements have shown that the Scotch-yoke generator produces pure sinusoidal instantaneous mean velocities with a mean deviation of 3%. Visualizations by laser-induced fluorescence and velocity measurements, coupled with the numerical results, have permitted analysis of the evolution of the swirling secondary flow structures that develop along the bends during the pulsation phase. These measurements were made for a range of steady Reynolds number (300≤Rest≤1200), frequency parameter (1≤α=r0⋅(ω/υ)1/2<20), and two velocity component ratios (β=Umax,osc/Ust). We observe satisfactory agreement between the numerical and experimental results. For high β, the secondary flow structure is modified by a Lyne instability and a siphon effect during the deceleration phase. The intensity of the secondary flow decreases as the parameter α increases during the acceleration phase. During the deceleration phase, under the effect of reverse flow, the secondary flow intensity increases with the appearance of Lyne flow. Experimental results also show that pulsating flow through a twisted curved pipe increases mixing over the steady twisted curved pipe. This mixing enhancement increases with β.


Author(s):  
Brahim Timite ◽  
Cathy Castelain ◽  
Hassan Peerhossaini

This work concerns the manipulation of a twisted curved pipe flow for mixing enhancement. Previous work [1,2,3] has shown that geometrical perturbations to a curved pipe flow can increase mixing and heat transfer by chaotic advection. In this work the flow entering the twisted pipe undergoes a pulsatile motion. The flow was studied experimentally and numerically. The numerical study is carried out by CFD code (Fluent 6) in which a pulsated velocity field is imposed as an inlet condition. The experimental setup involves principally a “Scotch-yoke” pulsatile generator and a twisted curved pipe. Laser Doppler velocimetry (LDV) measurements have shown that the Scotch-yoke generator produces pure sinusoidal instantaneous mean velocities with a mean deviation of 3%. Visualizations by laser-induced fluorescence (LIF) and velocity measurements, coupled with the numerical results, have permitted analysis of the evolution of the swirling secondary flow structures that develop along the bends during the pulsation phase. These measurements were made for a range of steady Reynolds number (300 ≤ Rest ≤ 1200), frequency parameter (1 ≤ α = r0.(ω/υ)1/2 &lt; 20), and two velocity components ratios (β = Umax,osc/Ust). We observe satisfactory agreement between the numerical and experimental results. For high β, the secondary flow structure is modified by a Lyne instability and a siphon effect during the deceleration phase. The intensity of the secondary flow decreases as the parameter α increases during the acceleration phase. During the deceleration phase, under the effect of reverse flow, the secondary flow intensity increases with the appearance of Lyne flow. Experimental results also show that pulsating flow through a twisted curved pipe increases mixing over the steady twisted curved pipe. This mixing enhancement increases with β.


Author(s):  
A. Vasilyev ◽  
V. Zakharov ◽  
O. Chelebyan ◽  
O. Zubkova

Abstract At the ASME Turbo Expo 2018 conference held in Oslo (Norway) on the 11th-15th of June 2018, the paper GT2018-75419 «Experience of Low-Emission Combustion of Aviation and Bio Fuels in Individual Flames after Front Mini-Modules of a Combustion Chamber» was published. This paper continues the studies devoted to the low-emission combustion of liquid fuels in GTE combustors. The paper presents a description of more detailed studies of the front module with a staged pneumatic fuel spray. The aerodynamic computations of the front module were conducted, and the disperse characteristics of the fuel-air spray were measured. The experimental research was carried out in two directions: 1) probing of the 3-burner sector flame tube at the distance of one third of its length (temperature field and gas sampling); 2) numerical study of the model combustor with actual arrangement of the modules in the dome within a wide range of fuel-air ratio. The calculated and experimental data of velocity field behind the front module were compared. And new data about the flame structure inside the test sector were obtained. Experimental data confirm the results of preliminary studies of the 3-burner sector: combustion efficiency is higher than 99.8%, EiNOx is at the level of 2–3 g/fuel kg at the combustor inlet air temperature of 680K and fuel-air ratio of 0.0225. The conducted research allowed to receive additional information on the influence of some design units on the pollutant emission and to estimate the different elements of computational methods for simulation of a low-emission combustor with a multi-atomizer dome.


Author(s):  
Georgii Glebovich Yankov ◽  
Vladimir Kurganov ◽  
Yury Zeigarnik ◽  
Irina Maslakova

Abstract The review of numerical studies on supercritical pressure (SCP) coolants heat transfer and hydraulic resistance in turbulent flow in vertical round tubes based on Reynolds-averaged Navier-Stokes (RANS) equations and different models for turbulent viscosity is presented. The paper is the first part of the general analysis, the works based on using algebraic turbulence models of different complexity are considered in it. The main attention is paid to Petukhov-Medvetskaya and Popov et al. models. They were developed especially for simulating heat transfer in tubes of the coolants with significantly variable properties (droplet liquids, gases, SCP fluids) under heating and cooling conditions. These predictions were verified on the entire reliable experimental data base. It is shown that in the case of turbulent flow in vertical round tubes these models make it possible predicting heat transfer and hydraulic resistance characteristics of SCP flows that agree well with the existed reliable experimental data on normal and certain modes of deteriorated heat transfer, if significant influence of buoyancy and radical flow restructuring are absent. For the more complicated cases than a flow in round vertical tubes, as well as for the case of rather strong buoyancy effect, more sophisticated prediction techniques must be applied. The state-of-the-art of these methods and the problems of their application are considered in the Part II of the analysis.


Author(s):  
Heyi Zeng ◽  
Yun Guo

Rod bundles are essential elements of pressurized water nuclear reactors. They consist of tightly packed arrays of rods, which contain the nuclear fuel and are surrounded by flowing liquid coolant. Flow phenomena in the subchannels bounded by adjacent rods are quite complex and exhibit patterns not present in pipe flows. Development of nuclear reactors and of fuel assemblies requires fluid dynamics analysis activities. The detailed prediction of velocity and temperature distributions inside a rod bundle is one of the main objectives of the current research in reactor thermal hydraulics. Computational fluid dynamics (CFD) simulation is of great interest for the design and safety analysis of nuclear reactors since it has recently achieved considerable advancements. In the present studies, numerical simulation were performed on developed turbulent flow through core subchannels with configurations of triangle and square lattice, and impact of different turbulence models built-in software package FLUENT upon simulation results of velocity distribution and hydraulic characteristics in channels with complicated geometry were compared and analyzed. Results show that simulation result greatly depends on turbulence models. Due to the complicated geometric construction, the complicated three-dimensional turbulent flow shows highly anisotropic characteristics. Turbulence models assuming isotropic turbulent viscosity failed to predict secondary flow phenomena during turbulent flow in fuel assembly channel. By solving Reynolds stresses transport equations, more elaborate Reynolds stress model (RSM) can catch secondary flow accurately. The present studies have provided valuable references and guidelines for further investigation on convective heat transfer simulation in complicated geometry and thermalhydrulic analysis of nuclear reactor core.


Author(s):  
T Micha Prem Kumar ◽  
Dhiman Chatterjee

In this paper, a numerical study of turbulent flow over the S-shaped hydrofoil at 0° angle of attack has been reported. Here, the flow takes place over concave and convex surfaces and is accompanied by the favourable and adverse pressure gradients and flow separation. Modelling such a flow poses a formidable challenge. In the present work four turbulence models, namely, k–∊ realizable, k–ω shear stress transport


Author(s):  
G. D. MacIsaac ◽  
S. A. Sjolander

The final losses within a turbulent flow are realized when eddies completely dissipate to internal energy through viscous interactions. The accurate prediction of the turbulence dissipation, and therefore the losses, requires turbulence models which represent, as accurately as possible, the true flow physics. Eddy viscosity turbulence models, commonly used for design level computations, are based on the Boussinesq approximation and inherently assume the eddy viscosity field is isotropic. The current paper compares the computational predictions of the flow downstream of a low-speed linear turbine cascade to the experimentally measured results. Steady-state computational simulations were performed using ANSYS CFX v12.0 and employed the shear stress transport (SST) turbulence model with the γ-Reθ transition model. The experimental data includes measurements of the mean and turbulent flow quantities. Steady pressure measurements were collected using a seven-hole pressure probe and the turbulent flow quantities were measured using a rotatable x-type hotwire probe. Data is presented for two axial locations: 120% and 140% of the axial chord (Cx) downstream of the leading edge. The computed loss distribution and total bladerow losses are compared to the experimental measurements. Differences are noted and a discussion of the flow structures provides insights into the origin of the differences. Contours of the shear eddy viscosity are presented for each axial plane. The secondary flow appears highly anisotropic, demonstrating a fundamental difference between the computed and measured results. This raises questions as to the validity of using two-equation turbulence models, which are based on the Boussinesq approximation, for secondary flow predictions.


1983 ◽  
Vol 137 ◽  
pp. 31-58 ◽  
Author(s):  
S. W. Tu ◽  
B. R. Ramaprian

The present paper is the first part of a two-part report on a detailed investigation of periodic turbulent pipe flow. In this investigation, experimental data on instantaneous velocity and wall shear stress were obtained at a mean Reynolds number of 50000 in a fully developed turbulent pipe flow in which the volumetric flow rate was varied sinusoidally with time around the mean. Two oscillation frequencies at significant levels of flow modulation were studied in detail. The higher of these frequencies was of the order of the turbulent bursting frequency in the flow, and the other can be regarded as an intermediate frequency at which the flow still departed significantly from quasi-steady behaviour. While a few similar experiments have been reported in the recent literature, the present study stands out from the others in respect of the flow regimes investigated, the magnitude of flow modulation, the detailed nature of the measurements and most importantly the identification of a relevant parameter to characterize unsteady shear flows. The present paper contains the main experimental results and comparisons of these results with the results of a numerical calculation procedure which employs a well-known quasi-steady turbulence closure model. The experimental data are used to study the manner in which the time-mean, the ensemble-averaged and the random flow properties are influenced by flow oscillation at moderate to high frequencies. In addition, the data are also used to bring out the capability and limitations of quasi-steady turbulence modelling in the prediction of unsteady shear flows. A further and more detailed analysis of the experimental data, results of some additional experiments and a discussion on the characterization of turbulent shear flows are provided in Part 2 (Ramaprian & Tu 1983).


Sign in / Sign up

Export Citation Format

Share Document