scholarly journals Application of Feature-Learning Methods Toward Product Usage Context Identification and Comfort Prediction

Author(s):  
Dipanjan Ghosh ◽  
Andrew Olewnik ◽  
Kemper Lewis

Usage context is considered a critical driving factor for customers' product choices. In addition, physical use of a product (i.e., user-product interaction) dictates a number of customer perceptions (e.g., level of comfort). In the emerging internet of things (IoT), this work hypothesizes that it is possible to understand product usage and level of comfort while it is “in-use” by capturing the user-product interaction data. Mining this data to understand both the usage context and the comfort of the user adds new capabilities to product design. There has been tremendous progress in the field of data analytics, but the application in product design is still nascent. In this work, application of feature-learning methods for the identification of product usage context and level of comfort is demonstrated, where usage context is limited to the activity of the user. A novel generic architecture using foundations in convolutional neural network (CNN) is developed and applied to a walking activity classification using smartphone accelerometer data. Results are compared with feature-based machine learning algorithms (neural network and support vector machines (SVM)) and demonstrate the benefits of using the feature-learning methods over the feature-based machine-learning algorithms. To demonstrate the generic nature of the architecture, an application toward comfort level prediction is presented using force sensor data from a sensor-integrated shoe.

Author(s):  
Dipanjan D. Ghosh ◽  
Andrew Olewnik ◽  
Kemper Lewis

Usage context is considered a critical driving factor for customers’ product choices. In addition, the physical use of a product (i.e., user-product interaction) dictates a number of customer perceptions (e.g. level of comfort, ease-of-use or users’ physical fatigue). In the emerging Internet-of-Things (IoT), this work hypothesizes that it is possible to understand product usage while it is ‘in-use’ by capturing the user-product interaction data. Mining the data and understanding the comfort of the user adds a new dimension to the product design field. There has been tremendous progress in the field of data analytics, but the application in product design is still nascent. In this work, application of ‘feature learning’ methods for the identification of product usage context is demonstrated, where usage context is limited to the activity of the user. Two feature learning methods are applied for a walking activity classification using smartphone accelerometer data. Results are compared with feature-based machine learning algorithms (neural networks and support vector machines), and demonstrate the benefits of using the ‘feature learning’ methods over the feature based machine-learning algorithms.


2021 ◽  
Vol 19 (3) ◽  
pp. 55-64
Author(s):  
K. N. Maiorov ◽  

The paper examines the life cycle of field development, analyzes the processes of the field development design stage for the application of machine learning methods. For each process, relevant problems are highlighted, existing solutions based on machine learning methods, ideas and problems are proposed that could be effectively solved by machine learning methods. For the main part of the processes, examples of solutions are briefly described; the advantages and disadvantages of the approaches are identified. The most common solution method is feed-forward neural networks. Subject to preliminary normalization of the input data, this is the most versatile algorithm for regression and classification problems. However, in the problem of selecting wells for hydraulic fracturing, a whole ensemble of machine learning models was used, where, in addition to a neural network, there was a random forest, gradient boosting and linear regression. For the problem of optimizing the placement of a grid of oil wells, the disadvantages of existing solutions based on a neural network and a simple reinforcement learning approach based on Markov decision-making process are identified. A deep reinforcement learning algorithm called Alpha Zero is proposed, which has previously shown significant results in the role of artificial intelligence for games. This algorithm is a decision tree search that directs the neural network: only those branches that have received the best estimates from the neural network are considered more thoroughly. The paper highlights the similarities between the tasks for which Alpha Zero was previously used, and the task of optimizing the placement of a grid of oil producing wells. Conclusions are made about the possibility of using and modifying the algorithm of the optimization problem being solved. Аn approach is proposed to take into account symmetric states in a Monte Carlo tree to reduce the number of required simulations.


Author(s):  
Akshay Rajendra Naik ◽  
A. V. Deorankar ◽  
P. B. Ambhore

Rainfall prediction is useful for all people for decision making in all fields, such as out door gamming, farming, traveling, and factory and for other activities. We studied various methods for rainfall prediction such as machine learning and neural networks. There is various machine learning algorithms are used in previous existing methods such as naïve byes, support vector machines, random forest, decision trees, and ensemble learning methods. We used deep neural network for rainfall prediction, and for optimization of deep neural network Adam optimizer is used for setting modal parameters, as a result our method gives better results as compare to other machine learning methods.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2613
Author(s):  
Jonathan Moeyersons ◽  
John Morales ◽  
Nick Seeuws ◽  
Chris Van Hoof ◽  
Evelien Hermeling ◽  
...  

Impedance pneumography has been suggested as an ambulatory technique for the monitoring of respiratory diseases. However, its ambulatory nature makes the recordings more prone to noise sources. It is important that such noisy segments are identified and removed, since they could have a huge impact on the performance of data-driven decision support tools. In this study, we investigated the added value of machine learning algorithms to separate clean from noisy bio-impedance signals. We compared three approaches: a heuristic algorithm, a feature-based classification model (SVM) and a convolutional neural network (CNN). The dataset consists of 47 chronic obstructive pulmonary disease patients who performed an inspiratory threshold loading protocol. During this protocol, their respiration was recorded with a bio-impedance device and a spirometer, which served as a gold standard. Four annotators scored the signals for the presence of artefacts, based on the reference signal. We have shown that the accuracy of both machine learning approaches (SVM: 87.77 ± 2.64% and CNN: 87.20 ± 2.78%) is significantly higher, compared to the heuristic approach (84.69 ± 2.32%). Moreover, no significant differences could be observed between the two machine learning approaches. The feature-based and neural network model obtained a respective AUC of 92.77±2.95% and 92.51±1.74%. These findings show that a data-driven approach could be beneficial for the task of artefact detection in respiratory thoracic bio-impedance signals.


Georesursy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 79-85
Author(s):  
Anatoliy N. Dmitrievsky ◽  
Alexander G. Sboev ◽  
Nikolai A. Eremin ◽  
Alexander D. Chernikov ◽  
Aleksandr V. Naumov ◽  
...  

The article is devoted to the development of a hybrid method for predicting and preventing the development of troubles in the process of drilling wells based on machine learning methods and modern neural network models. Troubles during the drilling process, such as filtrate leakoff; gas, oil and water shows and sticking, lead to an increase in unproductive time, i.e. time that is not technically necessary for well construction and is caused by various violations of the production process. Several different approaches have been considered, including based on the regression model for predicting the indicator function, which reflects an approach to a developing trouble, as well as anomaly extraction models built both on basic machine learning algorithms and using the neural network model of deep learning. Showing visualized examples of the work of the developed methods on simulation and real data. Intelligent analysis of Big Geodata from geological and technological measurement stations is based on well-proven machine learning algorithms. Based on these data, a neural network model was proposed to prevent troubles and emergencies during the construction of wells. The use of this method will minimize unproductive drilling time.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alan Brnabic ◽  
Lisa M. Hess

Abstract Background Machine learning is a broad term encompassing a number of methods that allow the investigator to learn from the data. These methods may permit large real-world databases to be more rapidly translated to applications to inform patient-provider decision making. Methods This systematic literature review was conducted to identify published observational research of employed machine learning to inform decision making at the patient-provider level. The search strategy was implemented and studies meeting eligibility criteria were evaluated by two independent reviewers. Relevant data related to study design, statistical methods and strengths and limitations were identified; study quality was assessed using a modified version of the Luo checklist. Results A total of 34 publications from January 2014 to September 2020 were identified and evaluated for this review. There were diverse methods, statistical packages and approaches used across identified studies. The most common methods included decision tree and random forest approaches. Most studies applied internal validation but only two conducted external validation. Most studies utilized one algorithm, and only eight studies applied multiple machine learning algorithms to the data. Seven items on the Luo checklist failed to be met by more than 50% of published studies. Conclusions A wide variety of approaches, algorithms, statistical software, and validation strategies were employed in the application of machine learning methods to inform patient-provider decision making. There is a need to ensure that multiple machine learning approaches are used, the model selection strategy is clearly defined, and both internal and external validation are necessary to be sure that decisions for patient care are being made with the highest quality evidence. Future work should routinely employ ensemble methods incorporating multiple machine learning algorithms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Imogen Schofield ◽  
David C. Brodbelt ◽  
Noel Kennedy ◽  
Stijn J. M. Niessen ◽  
David B. Church ◽  
...  

AbstractCushing’s syndrome is an endocrine disease in dogs that negatively impacts upon the quality-of-life of affected animals. Cushing’s syndrome can be a challenging diagnosis to confirm, therefore new methods to aid diagnosis are warranted. Four machine-learning algorithms were applied to predict a future diagnosis of Cushing's syndrome, using structured clinical data from the VetCompass programme in the UK. Dogs suspected of having Cushing's syndrome were included in the analysis and classified based on their final reported diagnosis within their clinical records. Demographic and clinical features available at the point of first suspicion by the attending veterinarian were included within the models. The machine-learning methods were able to classify the recorded Cushing’s syndrome diagnoses, with good predictive performance. The LASSO penalised regression model indicated the best overall performance when applied to the test set with an AUROC = 0.85 (95% CI 0.80–0.89), sensitivity = 0.71, specificity = 0.82, PPV = 0.75 and NPV = 0.78. The findings of our study indicate that machine-learning methods could predict the future diagnosis of a practicing veterinarian. New approaches using these methods could support clinical decision-making and contribute to improved diagnosis of Cushing’s syndrome in dogs.


2020 ◽  
pp. 1-12
Author(s):  
Cao Yanli

The research on the risk pricing of Internet finance online loans not only enriches the theory and methods of online loan pricing, but also helps to improve the level of online loan risk pricing. In order to improve the efficiency of Internet financial supervision, this article builds an Internet financial supervision system based on machine learning algorithms and improved neural network algorithms. Moreover, on the basis of factor analysis and discretization of loan data, this paper selects the relatively mature Logistic regression model to evaluate the credit risk of the borrower and considers the comprehensive management of credit risk and the matching with income. In addition, according to the relevant provisions of the New Basel Agreement on expected losses and economic capital, starting from the relevant factors, this article combines the credit risk assessment results to obtain relevant factors through regional research and conduct empirical analysis. The research results show that the model constructed in this paper has certain reliability.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 771
Author(s):  
Toshiya Arakawa

Mammalian behavior is typically monitored by observation. However, direct observation requires a substantial amount of effort and time, if the number of mammals to be observed is sufficiently large or if the observation is conducted for a prolonged period. In this study, machine learning methods as hidden Markov models (HMMs), random forests, support vector machines (SVMs), and neural networks, were applied to detect and estimate whether a goat is in estrus based on the goat’s behavior; thus, the adequacy of the method was verified. Goat’s tracking data was obtained using a video tracking system and used to estimate whether they, which are in “estrus” or “non-estrus”, were in either states: “approaching the male”, or “standing near the male”. Totally, the PC of random forest seems to be the highest. However, The percentage concordance (PC) value besides the goats whose data were used for training data sets is relatively low. It is suggested that random forest tend to over-fit to training data. Besides random forest, the PC of HMMs and SVMs is high. However, considering the calculation time and HMM’s advantage in that it is a time series model, HMM is better method. The PC of neural network is totally low, however, if the more goat’s data were acquired, neural network would be an adequate method for estimation.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 210 ◽  
Author(s):  
Zied Tayeb ◽  
Juri Fedjaev ◽  
Nejla Ghaboosi ◽  
Christoph Richter ◽  
Lukas Everding ◽  
...  

Non-invasive, electroencephalography (EEG)-based brain-computer interfaces (BCIs) on motor imagery movements translate the subject’s motor intention into control signals through classifying the EEG patterns caused by different imagination tasks, e.g., hand movements. This type of BCI has been widely studied and used as an alternative mode of communication and environmental control for disabled patients, such as those suffering from a brainstem stroke or a spinal cord injury (SCI). Notwithstanding the success of traditional machine learning methods in classifying EEG signals, these methods still rely on hand-crafted features. The extraction of such features is a difficult task due to the high non-stationarity of EEG signals, which is a major cause by the stagnating progress in classification performance. Remarkable advances in deep learning methods allow end-to-end learning without any feature engineering, which could benefit BCI motor imagery applications. We developed three deep learning models: (1) A long short-term memory (LSTM); (2) a spectrogram-based convolutional neural network model (CNN); and (3) a recurrent convolutional neural network (RCNN), for decoding motor imagery movements directly from raw EEG signals without (any manual) feature engineering. Results were evaluated on our own publicly available, EEG data collected from 20 subjects and on an existing dataset known as 2b EEG dataset from “BCI Competition IV”. Overall, better classification performance was achieved with deep learning models compared to state-of-the art machine learning techniques, which could chart a route ahead for developing new robust techniques for EEG signal decoding. We underpin this point by demonstrating the successful real-time control of a robotic arm using our CNN based BCI.


Sign in / Sign up

Export Citation Format

Share Document