A Study of Design Fixation Related to Additive Manufacturing

2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Esraa S. Abdelall ◽  
Matthew C. Frank ◽  
Richard T. Stone

This study aims to understand the effect of additive manufacturing (AM) on design fixation. Whereas previous research illustrates the positive aspects of AM, the overarching hypothesis of this work is that it might also have negative effects with respect to conventional manufacturability. In this work, participants from two groups, a design for conventional manufacturing (DfCM) group, and a design for additive manufacturing (DfAM) group, were asked to design a basic product. Then, a second iteration of the design asked both groups to design for conventional processes, and to include subtractive and formative methods like machining and casting, respectively. Findings showed that the DfAM fixated on nonproducible manufacturing features and produced harder to conventionally manufacture designs, even when told specifically to DfCM. There was also evidence that the complex designs of the DfAM group limited their modeling success and seemed to encourage them to violate more design constraints. This study draws attention to the negative effect of AM knowledge on designers and provides motivation for treatment methods. This is important if AM is used in prototyping or short run production of parts that are slated for conventional manufacturing later. The issue of design fixation is not a problem if AM is the final manufacturing method—a more common practice nowadays. This work suggests that one should consider the possibility of fixation in design environments where AM precedes larger volume conventional manufacturing.

Author(s):  
Marcio Fernando Cruz ◽  
Anderson Vicente Borille ◽  
Luis Gonzaga Trabasso ◽  
Carlos Roberto Pansani de Haro ◽  
Felipe Brandão

Procedia CIRP ◽  
2017 ◽  
Vol 60 ◽  
pp. 223-228 ◽  
Author(s):  
Myriam Orquéra ◽  
Sébastien Campocasso ◽  
Dominique Millet

2018 ◽  
Vol 786 ◽  
pp. 342-347 ◽  
Author(s):  
Kari Mäntyjärvi ◽  
Terho Iso-Junno ◽  
Henri Niemi ◽  
Jarmo Mäkikangas

As a new manufacturing method, Additive Manufacturing has begun to get a foothold in the manufacturing industry. The effective exploitation of the technology requires many times a re-design of the product or re-considering the manufacturing technology. Design for additive manufacturing differs considerably from design to other manufacturing methods, therefore design guidelines for additive manufacturing has been developed. The purpose of this paper is to present a new variant of the Design for Manufacturing and Assembly (DFMA) method which supports additive manufacturing.


2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Esraa S. Abdelall ◽  
Matthew C. Frank ◽  
Richard T. Stone

This study assessed the effectiveness of three-dimensional (3D) visual feedback from design for manufacturability (DFM) software on mitigating design fixation on nonproducible manufacturability features. A fixation group and a defixation group were asked to design a basic product for additive manufacturing (AM) and then to modify the next iteration for conventional machining. The fixation group relied on their self-assessment while modifying, while the defixation group utilized dfm software feedback. Results showed that 3D feedback reduced design fixation on nonproducible features and improved the machinability of modified designs. Findings suggest the use of dfm software for treating the design fixation related to AM and for facilitating migration of designs from additive to conventional manufacturing. This work could be applied to manufacturing industries, particularly where AM is used for prototyping, or when demand for part changes and an AM part needs to migrate to conventional methods.


2021 ◽  
Author(s):  
Jennifer Bracken Brennan ◽  
William B. Miney ◽  
Timothy W. Simpson ◽  
Kathryn W. Jablokow

Abstract Designing successfully for any new or unfamiliar manufacturing technology requires an ability to look beyond the manufacturing limitations that have constrained one’s design ideas in the past. However, potential cognitive bias or fixation on familiar manufacturing processes may make this a challenge for designers. In this paper we introduce the novel concept of Manufacturing Fixation in Design (MFD), which we define as unconscious and often unintentional adherence to a limited set of manufacturing processes and/or constraints and capabilities during the design ideation process. This concept is explored as a subset of design fixation, a cognitive bias often experienced by designers and engineers. After reviewing related literature in design fixation, we introduce MFD as a type of design fixation and explore ways in which fixation on manufacturing might be assessed. We then offer an exploratory case study involving design for additive manufacturing, an advanced manufacturing technology that has seen considerable interest lately. The case study involves a Design for Additive Manufacturing workshop given at an aerospace technology company headquartered in the United States with participants who are professional engineering designers. Results from the study are used to explore how MFD manifests and how its impact in design and optimization for manufacturing might be measured. Future research and next steps to validate the existence of MFD are also discussed.


Author(s):  
Gang Zhao ◽  
Guocai Ma ◽  
Wenlei Xiao ◽  
Yu Tian

Additive manufacturing has been developed for decades and attracts significant research interests in recent years. Usually, the stereolithography tessellation language format is employed in additive manufacturing to represent the geometric data. However, people gradually realize the inevitable drawbacks of the stereolithography tessellation language file format, such as redundancy, inaccuracy, missing of feature definitions, and lack of integrity. In addition, it is almost impossible to apply the simple polygonal facet representation to the five-axis manufacturing strategy. Hence, there are quite few researches and applications on the five-axis additive manufacturing, in spite of its common applications in the subtractive machining. This article proposes a feature-based five-axis additive manufacturing methodology to enhance and extend the additive manufacturing method. The additive manufacturing features are defined and categorized into two5D_AM_feature and freeform_AM_feature. A feature extraction method is proposed that can automatically recognize the additive manufacturing features from the input model. Specially for the freeform_AM_feature, a five-axis path planning method is proposed and split into three stages: (1) offset the reference surface, (2) spatially slice the freeform layers, and (3) generate the toolpaths for each freeform layer. Real additive manufacturing five-axis toolpaths can be obtained using the proposed algorithm that performs as a secondary developed plug-in in the CATIA® environment. A robotic additive manufacturing system is constructed for the implementation of the five-axis additive manufacturing tasks, which are generated by the proposed algorithms and post-processed after simulation and off-line programming. Some examples are printed to validate the feasibility and efficiency of the proposed method.


2021 ◽  
Vol 18 ◽  
pp. 147997312110296
Author(s):  
Geertje M de Boer ◽  
Laura Houweling ◽  
Rudi W Hendriks ◽  
Jan H Vercoulen ◽  
Gerdien A Tramper-Stranders ◽  
...  

Population studies showed a decrease in psychological wellbeing during the COVID-19 pandemic. Asthma is associated with a negative effect on anxiety and depression, which might worsen during the COVID-19 lockdown. The aim of the study was to compare fear, anxiety and depression between asthma patients and patients wit hout asthma pre-COVID-19 and during COVID-19 pandemic. This study compares fear, anxiety and depression in asthma patients and controls between pre-COVID-19 and during COVID-19 lockdown with a cross-sectional online survey. Participants were invited to fill out several questionnaires pertaining to fear, anxiety, depression, asthma control and quality of life. Asthma patients (N = 37) displayed, during the course of the pandemic, a clinically relevant increase in anxiety (3.32 ± 2.95 vs. 6.68 ± 3.78; p < 0.001) and depression (1.30 ± 1.15 vs. 3.65 ± 3.31; p < 0.001), according to the hospital anxiety and depression levels (HADS) compared to pre-COVID-19 assessment. This was not seen in controls. Also, asthma patients displayed more anxiety about acquiring COVID-19 disease compared to controls ((5.11 ± 1.99 vs. 3.50 ± 2.79), p = 0.006). Patients with asthma experienced an increase in anxiety and depression levels and were more afraid of acquiring COVID-19 disease compared to controls. Also, patients with asthma were more likely to avoid healthcare facilities due to fear of acquiring COVID-19 disease compared to controls. Therefore, we advise health care workers to address these possible negative effects on mental health by phone or e-consults.


2021 ◽  
Vol 1 ◽  
pp. 1657-1666
Author(s):  
Joaquin Montero ◽  
Sebastian Weber ◽  
Christoph Petroll ◽  
Stefan Brenner ◽  
Matthias Bleckmann ◽  
...  

AbstractCommercially available metal Laser Powder Bed Fusion (L-PBF) systems are steadily evolving. Thus, design limitations narrow and the diversity of achievable geometries widens. This progress leads researchers to create innovative benchmarks to understand the new system capabilities. Thereby, designers can update their knowledge base in design for additive manufacturing (DfAM). To date, there are plenty of geometrical benchmarks that seek to develop generic test artefacts. Still, they are often complex to measure, and the information they deliver may not be relevant to some designers. This article proposes a geometrical benchmarking approach for metal L-PBF systems based on the designer needs. Furthermore, Geometric Dimensioning and Tolerancing (GD&T) characteristics enhance the approach. A practical use-case is presented, consisting of developing, manufacturing, and measuring a meaningful and straightforward geometric test artefact. Moreover, optical measuring systems are used to create a tailored uncertainty map for benchmarking two different L-PBF systems.


2021 ◽  
Vol 1 ◽  
pp. 2571-2580
Author(s):  
Filip Valjak ◽  
Angelica Lindwall

AbstractThe advent of additive manufacturing (AM) in recent years have had a significant impact on the design process. Because of new manufacturing technology, a new area of research emerged – Design for Additive Manufacturing (DfAM) with newly developed design support methods and tools. This paper looks into the current status of the field regarding the conceptual design of AM products, with the focus on how literature sources treat design heuristics and design principles in the context of DfAM. To answer the research question, a systematic literature review was conducted. The results are analysed, compared and discussed on three main points: the definition of the design heuristics and the design principles, level of support they provide, as well as where and how they are used inside the design process. The paper highlights the similarities and differences between design heuristics and design principles in the context of DfAM.


Sign in / Sign up

Export Citation Format

Share Document