Effects of Microstructure of Quasicrystal Alloys on Their Mechanical and Tribological Performance

2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Kyungjun Lee ◽  
Wei Dai ◽  
Donald Naugle ◽  
Hong Liang

The current design of materials against wear considers hardness as the sole material property. As a result, the brittleness associated with increased hardness leads to severe damage. The purpose of this research is to understand the nature of conflicts between hardness and toughness of a new alloy composite. First, we designed Al-Cu-Fe alloys containing crystal structures of λ, β, and quasi-crystalline i-phase. These and their combination with others lead to a set of alloys with various hardness and fracture toughness. Experimental study was carried out using a noble and hard tungsten carbide (WC) ball against sample disks. The WC ball did not produce any wear. The wear rate of those alloys was found to be dependent not only on their hardness, but also the toughness, an alternative to the well-accepted Archard-based equations.

2016 ◽  
Vol 1136 ◽  
pp. 573-578 ◽  
Author(s):  
Su Lin Chen ◽  
Bin Shen ◽  
Fang Hong Sun

The present study reports the influence of graphene layers on the tribological performance of CVD diamond films when they are used as the solid lubricants. Friction tests are conducted on a ball-on-plate friction tester, where the stainless steel is used as the counterpart material. The CVD diamond film sample is a typical microcrystalline diamond (MCD) coating which is deposited on a flat tungsten carbide substrate using the hot filament chemical vapor deposition method (HFCVD). Besides the MCD sample, a polished MCD film (pMCD) and a polished tungsten carbide (pWC) are also adopted in frictional tests, aiming at illustrating the influence of the surface morphology, as well as the physical property, of the sample on the lubricative effect of graphene layers. The experimental results show that graphene layers can effectively reduce the coefficient of friction (COF), regardless of the samples. The MCD sample presents the lowest stable COF, which is 0.13, in dry sliding period when the graphene flakes are sparyed on the sliding interface; while the pMCD and pWC samples exhibit slightly higher COFs, which are 0.16 and 0.18, respectively. Comparatively, the COFs of these three samples obtained in dry sliding process without graphene are 0.20, 0.25 and 0.64. In additon, the MCD sample exhibits a much longer stable dry slidng process which is more than 5000 cycles. Comparatively, the other two tribo-pairs only exhibit a stable low-COF dry sliding period for around 2000 cycles. The reduction of COF could be attributed to the graphene flakes adhered on the sliding interface. It forms a layer of solid lubricative film with extremely low shear strength and significantly decreases the interactions between two contacted surfaces. The rugged surface of the MCD film provides sufficient clogging locations for graphene flakes, which allows the generated lubricative film enduring a long sliding duration. It can be arrived from this study that the tribological properties of the MCD film could be enhanced by simply adoping graphene layers as a solid lubricant. Furthermore, an improved performance of a variety of MCD coated cutting tools or mechanical components could be expected when they are utilized with graphene layers.


Author(s):  
Yong Wang ◽  
Huanjun Jiang ◽  
Chen Wu ◽  
Zihui Xu ◽  
Zhiyuan Qin

<p>Suspended ceiling systems (SCSs) experienced severe damage during strong earthquakes that occurred in recent years. The capacity of the ceiling component is a crucial factor affecting the seismic performance of SCS. Therefore, a series of static tests on suspended ceiling components under monotonic and cyclic loadings were carried out to investigate the seismic performance of the ceiling components. The ceiling components include main tee splices, cross tee latches and peripheral attachments. All specimens were tested under axial loading. Additionally, the static tests of cross tee latches subjected to shear and bending loadings were performed due to their seismic vulnerability. The failure pattern, load-carrying ability, deformation capacity and energy dissipation of the ceiling components are presented in detail in this study.</p>


1975 ◽  
Author(s):  
Pierre DeSaix

Model tests are presented for a series of nine keels; three aspect ratios, three sweep angles; all at constant lateral area, taper ratio and thickness ratio. The series is shown to bracket current design trends. These keels are all tested on the same canoe body, over a range of heel angles, lee-ways, and speeds. The results are presented in terms of full-scale sailing performance with due allowance for a reasonable ballast ratio and resulting vertical center of gravity for each keel. Optimum sweep angles for each aspect ratio are found. A second series of three keels, geometrically similar but varying in lateral area, is provided. Predictions of windward performance demonstrate the effect of keel size. An optimum size is found for three wind strengths. The results are for one hull form only. However, a method is suggested for estimating the effect of keel size and shape for any proposed design.


2019 ◽  
Vol 71 (9) ◽  
pp. 468-475 ◽  
Author(s):  
Ninghui Liang ◽  
Jifei Dai ◽  
Xinrong Liu ◽  
Zuliang Zhong

Heliyon ◽  
2019 ◽  
Vol 5 (7) ◽  
pp. e02065 ◽  
Author(s):  
Sa'ed A. Musmar ◽  
Ammar Alrousan ◽  
Iskander Tlili

2018 ◽  
Vol 55 (1) ◽  
pp. 102-110 ◽  
Author(s):  
Marian Bastiurea ◽  
Dumitru Dima ◽  
Gabriel Andrei

Graphene oxide and graphite filled polyester composites were prepared by using conventional melt-mixing methods in order to improve tribological performance of polyester. It was investigated friction stability, microhardness, friction coefficient, and specific wear rate of the composites in details. It was found that the presence of graphite and graphene oxide influenced friction coefficient and wear rate of the composites. Graphene oxide decreased wear rate with increasing of test speed and graphite decreased wear rate for composite for all speeds. Tribological performance of the polyester/graphene composites is mainly attributed to bigger thermal conductivity for graphene, which can easily dissipate the heat which appears during the friction process at bigger forces. The positive influence of graphite on coefficient of friction (COF) of the composites is the result of the clivage of graphite layers during the loadings due to van der Waals weak bonds between the graphite layers.


Sign in / Sign up

Export Citation Format

Share Document