scholarly journals Effect of cylinder-liner rotation on wear rate: An experimental study

Heliyon ◽  
2019 ◽  
Vol 5 (7) ◽  
pp. e02065 ◽  
Author(s):  
Sa'ed A. Musmar ◽  
Ammar Alrousan ◽  
Iskander Tlili
2020 ◽  
pp. 146808742093016
Author(s):  
Onur Biyiklioğlu ◽  
Mustafa Ertunc Tat

Internal combustion engines consume about 90% of fuel refined from crude oil which supplies 30% of the annual global flow of energy. Heavy-duty diesel engines are the primary source of power used in highways, marine, railroads, and power stations. The right coating can improve the tribological properties of cylinder liners and increase the mechanical efficiency of an engine. Also, it can help to extend the maintenance periods, and enhance the reliability of the vehicles. In this research, tribological and economic evaluations were performed for coated and uncoated substrates from a cylinder liner of a heavy-duty diesel engine, aiming to lower friction, wear rate, and maintenance cost. A reciprocating friction test was conducted under dry condition using Wolfram carbide (tungsten carbide) ball applied a 10 N normal load on a ball on disk geometry. The cylinder liner was made of gray cast iron, and the substrates obtained were coated with three different coating materials (Cr3C2/NiCr, NiCr, and Al2O3/TiO2) through the thermal spray and high-velocity oxy-fuel coating process. Tribological evaluations showed that the substrates coded with Al2O3/TiO2 and Cr3C2/NiCr had the lowest friction coefficient and wear rate. The most economical coating was Al2O3/TiO2, being able to supply about 61% lower coefficient of friction and 94% less wear rate relative to the uncoated sample, for the price of one-third of the Cr3C2/NiCr coating and one half of a new gray cast iron cylinder liner.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Kyungjun Lee ◽  
Wei Dai ◽  
Donald Naugle ◽  
Hong Liang

The current design of materials against wear considers hardness as the sole material property. As a result, the brittleness associated with increased hardness leads to severe damage. The purpose of this research is to understand the nature of conflicts between hardness and toughness of a new alloy composite. First, we designed Al-Cu-Fe alloys containing crystal structures of λ, β, and quasi-crystalline i-phase. These and their combination with others lead to a set of alloys with various hardness and fracture toughness. Experimental study was carried out using a noble and hard tungsten carbide (WC) ball against sample disks. The WC ball did not produce any wear. The wear rate of those alloys was found to be dependent not only on their hardness, but also the toughness, an alternative to the well-accepted Archard-based equations.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhishuang Wang ◽  
Songhua Li ◽  
Jian Sun ◽  
Junhai Wang ◽  
Yonghua Wang ◽  
...  

Purpose The purpose of this study is to investigate the effects of load and rotation speed on dry sliding of silicon nitride, including a series of tribological behaviors (friction coefficient, wear rate, temperature rise, etc.) and wear mechanism. Through the analysis of the above characteristics, the influence law of load and speed on them and the internal relationship between them are determined, and then the best comprehensive performance parameters of silicon nitride full-ceramic spherical plain bearings in dry sliding are predicted, which can provide guidance for the operation condition of silicon nitride full-ceramic spherical plain bearings in dry sliding. Design/methodology/approach The experimental study of different loads and rotation speeds under dry friction conditions was carried out by the using ball-disk sliding test method. Findings With the increase of load, the friction coefficient of silicon nitride friction pair and the wear rate of silicon nitride ball decrease continuously. With the increase of rotation speed, the friction coefficient of silicon nitride friction pair first increases and then decreases, and the wear of silicon nitride ball first increases and then decreases. With the increase of load and rotation speed, the wear mechanism eventually changes to adhesive wear. Originality/value Because of the low timeliness and inefficiency of bearing experiments, this work adopts a simple ball-disk model to comprehensively explore the influence rules of different conditions, which provides a theoretical basis for the subsequent practical application of silicon nitride full-ceramic spherical plain bearings.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Vikram Kumar ◽  
Sujeet Kumar Sinha ◽  
Avinash Kumar Agarwal

The main objective of this investigation is the evaluation of the performance of hard diamond-like-carbon (DLC) or tungsten carbide (WC) and soft (epoxy composite) dual-coatings on the internal combustion (IC) engine piston rings as a protective coating to reduce their wear. The rings were coated with DLC or WC by physical vapor deposition (PVD) method and then soft polymeric composite coating (epoxy/graphene/base oil SN150) was applied on the hard coating. The tribological tests of the dual-coated piston rings were conducted for 3.6 × 105 cycles at 1500 rpm engine speed and 50% rated load of a diesel engine in order to evaluate the wear performance of the piston rings. Scuffing of cylinder liner and piston rings interface was prevented by the application of polymer composites over the hard-coated rings. DLC hard and soft polymer composite dual coating over the top piston ring was found to have the lowest wear rate 1.69 × 10−12 mm3/N·m compared with the wear rate of dual coatings on the middle and lower rings.


2017 ◽  
Vol 4 (10) ◽  
pp. 10764-10768 ◽  
Author(s):  
T. Sudeep Kumar ◽  
G.S. Shivashankar ◽  
Kartik Dhotey ◽  
Jagjit Singh

Author(s):  
Fadhel Abbas Abdulla ◽  
Katea L. Hamid ◽  
Ahmed Ali Farhan Ogaili ◽  
Mohammed Abdulraoof Abdulrazzaq

Author(s):  
Gurtej Singh ◽  
Mohammad Farooq Wani ◽  
Mohammad Marouf Wani

Friction and wear are the main causes of energy dissipation in automotive engines. To minimize the frictional power losses, it is extremely important to improve the tribological characteristics of ring/liner assembly which accounts for almost 40–50% frictional power losses. The present study attempts to mitigate friction and wear of the ring/liner tribo-pair using GNP/SAE 15W40 nano-lubricant. To simulate the ring/liner interface, the tribological performance of nano-lubricants was assessed using a tribometer based on ASTMG181 standard under various operating conditions. The coefficient of friction (COF) and wear rate lowered using graphene nano-lubricants (GNL). The tribological results showed that friction coefficient, wear rate, and surface roughness of piston ring improved in the range 17.71%–42.33%, 25%–40.62%, and 61%, respectively, under GNL lubricating conditions during the boundary lubrication. Further, the characterization of wear tracks of piston ring and cylinder liner confirmed tribo-film formation on worn surfaces resulting in decreased COF and wear rate.


2017 ◽  
Vol 106 ◽  
pp. 23-33 ◽  
Author(s):  
B. Zabala ◽  
A. Igartua ◽  
X. Fernández ◽  
C. Priestner ◽  
H. Ofner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document