Effects of Texture Orientation on the Mixed Thermal Elastohydrodynamic Lubrication and Fatigue Life in Point Contacts

2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Xiao-Liang Yan ◽  
Yu-Yan Zhang ◽  
Guo-Xin Xie ◽  
Xiao-Qiong Du ◽  
Fen Qin

Predicting the mixed thermal lubrication performance and fatigue life of point contact components becomes more and more important with the increasing demand for the load capacity of machinery. To achieve this, a deterministic mixed thermal elastohydrodynamic lubrication (TEHL) model in point contacts considering surface roughness is developed in this study. This model is capable of determining the pressure and temperature under different lubrication regimes from mixed to full-film lubrication. Then, the established model is extended to the subsurface stress and fatigue life predictions. Numerical simulations are conducted to analyze the lubrication characteristics and fatigue life for the three-dimensional (3D) sinusoidal surfaces with variable directions. Results show that increasing entraining velocity contributes to the reduction of pressure fluctuation and prolongation of fatigue life. However, the resulting temperature increases with the entraining velocity. As for the influence of lubricant viscosity, increasing it prolongs the fatigue life, especially under mixed TEHL conditions. What's more, the effect of rough surface texture feature on fatigue life has a close relationship with the lubrication regime.

2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Xiao-Liang Yan ◽  
Xiao-Li Wang ◽  
Yu-Yan Zhang

The lubrication characteristics and fatigue life are numerically analyzed under full film and mixed lubrication regimes, in which the three-dimensional sinusoidal surfaces with changeable wavelengths in x and y directions are used, the geometry changes of the contact areas are described by the various ellipticity, and the non-Newtonian flow of lubricant is described by the sinh-law rheology model. The results show that the influences of characteristic shear stress, wavelength ratio, and ellipticity on lubrication characteristics and fatigue life are remarkable. The effect of surface topography on lubrication characteristics has a close relationship with speed. Increasing the ellipticity and decreasing wavelength ratio and characteristic shear stress can prolong the fatigue life.


Author(s):  
P Ehret ◽  
D Dowson ◽  
C M Taylor ◽  
D Wang

A multigrid multi-integration method has been used to solve the elastohydrodynamic lubrication (EHL) point contact problem over a large range of loads. Solutions obtained with the multigrid method are compared with those computed with an effective influence Newton method. Good agreement has been obtained, which validates the results obtained by both of these independent methods. Smooth surface problems have been used to test the multigrid method, but an example that takes into account a wavy surface has demonstrated the robustness and the large potential of the multigrid method to analyse EHL problems with three-dimensional surface roughness.


Author(s):  
Eduardo de la Guerra Ochoa ◽  
Javier Echávarri Otero ◽  
Enrique Chacón Tanarro ◽  
Benito del Río López

This article presents a thermal resistances-based approach for solving the thermal-elastohydrodynamic lubrication problem in point contact, taking the lubricant rheology into account. The friction coefficient in the contact is estimated, along with the distribution of both film thickness and temperature. A commercial tribometer is used in order to measure the friction coefficient at a ball-on-disc point contact lubricated with a polyalphaolefin base. These data and other experimental results available in the bibliography are compared to those obtained by using the proposed methodology, and thermal effects are analysed. The new approach shows good accuracy for predicting the friction coefficient and requires less computational cost than full thermal-elastohydrodynamic simulations.


Lubricants ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 78 ◽  
Author(s):  
Gregory de Boer ◽  
Andreas Almqvist

A two-scale method for modelling the Elastohydrodynamic Lubrication (EHL) of tilted-pad bearings is derived and a range of solutions are presented. The method is developed from previous publications and is based on the Heterogeneous Multiscale Methods (HMM). It facilitates, by means of homogenization, incorporating the effects of surface topography in the analysis of tilted-pad bearings. New to this article is the investigation of three-dimensional bearings, including the effects of both ideal and real surface topographies, micro-cavitation, and the metamodeling procedure used in coupling the problem scales. Solutions for smooth bearing surfaces, and under pure hydrodynamic operating conditions, obtained with the present two-scale EHL model, demonstrate equivalence to those obtained from well-established homogenization methods. Solutions obtained for elastohydrodynamic operating conditions, show a dependency of the solution to the pad thickness and load capacity of the bearing. More precisely, the response for the real surface topography was found to be stiffer in comparison to the ideal. Micro-scale results demonstrate periodicity of the flow and surface topography and this is consistent with the requirements of the HMM. The means of selecting micro-scale simulations based on intermediate macro-scale solutions, in the metamodeling approach, was developed for larger dimensionality and subsequent calibration. An analysis of the present metamodeling approach indicates improved performance in comparison to previous studies.


A technique using Newton’s rings for mapping the oil film of lubricated point contacts is described. A theoretical value for the film thickness of such contacts in elastohydrodynamic lubrication is derived. The experimental results give the exit constriction predicted by previous theory but never shown in detail. The comparison of theoretical and experimental oil film thicknesses, which is satisfactorily accurate, gives strong evidence for a viscous surface layer some 1000Å thick. This film agrees with the known ‘lubricating power’ of the various oils tested.


2015 ◽  
Vol 741 ◽  
pp. 443-448
Author(s):  
Bao Ming Wang ◽  
Xia Lun Yun ◽  
Xing Yao Liao ◽  
Xue Song Mei

Based on the theory of point contact thermal elastohydrodynamic lubrication (EHL),the mathematical models for the thermal EHL of high-speed angular contact ball bearing are established. Multi-grid method and multigrid integration method are respectively used to calculate out the film pressure and film thickness respectively,and the column-by-column scanning method is used to calculate temperature rise of isothermal EHL and thermal EHL. The calculation results show that, under the pure rolling condition, temperature rise of oil film temperature is mainly caused by the compression work and shear heat at inlet and the heat in contact zone mainly comes from the inlet and the heat conduction around; the temperature rise results in oil viscosity lower and the lubricating film thinner ,in this way it reduces the lubrication performance in contact pair.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohamed Abd Alsamieh

Purpose The purpose of this paper is to study the behavior of a single ridge passing through elastohydrodynamic lubrication of point contacts problem for different ridge shapes and sizes, including flat-top, triangular and cosine wave pattern to get an optimal ridge profile. Design/methodology/approach The time-dependent Reynolds’ equation is solved using Newton–Raphson technique. Several shapes of surface feature are simulated and the film thickness and pressure distribution are obtained at every time step by simultaneous solution of the Reynolds’ equation and film thickness equation, including elastic deformation. Film thickness and pressure distribution are chosen to be the criteria in the comparisons. Findings The geometrical characteristics of the ridge play an important role in the formation of lubricant film thickness profile and the pressure distribution through the contact zone. To minimize wear, friction and fatigue life, an optimal ridge profile should have smooth shape with small ridge size. Obtained results are compared with other published numerical results and show a good agreement. Originality/value The study evaluates the performance of different surface features of a single ridge with different shapes and sizes passing through elastohydrodynamic of point contact problem in relation to film thickness and pressure profile.


1976 ◽  
Vol 98 (4) ◽  
pp. 524-529 ◽  
Author(s):  
S. Biswas ◽  
R. W. Snidle

The paper presents a numerical solution for the elastohydrodynamic lubrication of low modulus point contacts which is broadly equivalent to the theory of Grubin for materials of high elastic modulus. The theoretical results obtained for the variation of minimum film thickness using this approach are therefore expected to apply to conditions of high load and low speed. For less severe conditions in which elastic deformation is less significant an alternative approach has been developed. Results of this analysis show the transition from undeformed to heavily loaded conditions. The effect of lubricant starvation has been examined for heavily loaded conditions and the theoretical results are compared with those obtained previously for high elastic modulus point contact.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Ilya I. Kudish

Heavily loaded point elastohydrodynamically lubricated (EHL) contacts involved in steady purely transitional, skewed transitional, and transitional with spinning motions are considered. It is shown that in the central parts of the inlet and exit zones of such heavily loaded point EHL contacts the asymptotic equations governing the EHL problem along the lubricant flow streamlines for the above types of contact motions can be reduced to two sets of asymptotic equations: one in the inlet and one in the exit zones. The latter sets of equations are identical to the asymptotic equations describing lubrication process in the inlet and exit zones of the corresponding heavily loaded line EHL contact (Kudish, I. I., 2013, Elastohydrodynamic Lubrication for Line and Point Contacts: Asymptotic and Numerical Approaches, Chapman and Hall/CRC). For each specific motion of a point contact, a separate set of formulas for the lubrication film thickness is obtained. For different types of contact motions, these film thickness formulas differ significantly (Kudish, I. I., 2013, Elastohydrodynamic Lubrication for Line and Point Contacts: Asymptotic and Numerical Approaches, Chapman and Hall/CRC). For heavily loaded contacts, the discovered relationship between point and line EHL problems allows to apply to point contacts most of the results obtained for line contacts (Kudish, I. I., 2013, Elastohydrodynamic Lubrication for Line and Point Contacts: Asymptotic and Numerical Approaches, Chapman and Hall/CRC; Kudish, I. I., and Covitch, M. J., 2010, Modeling and Analytical Methods in Tribology, Chapman and Hall/CRC).


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Wei Pu ◽  
Jiaxu Wang ◽  
Rongsong Yang ◽  
Dong Zhu

Spiral bevel and hypoid gears are key components widely used for transmitting significant power in various types of vehicles and engineering machineries. In reality, these gear surfaces are quite rough with three-dimensional (3D) topography that may significantly influence the lubrication formation and breakdown as well as components failures. Previous spiral bevel and hypoid gears lubrication studies, however, were limited mostly to cases under the full-film lubrication condition with smooth surfaces. In the present study, a comprehensive analysis for gearing geometry, kinematics, mixed lubrication performance, and friction and interfacial flash temperature in spiral bevel and hypoid gears is developed based on a recently developed mixed elastohydrodynamic lubrication (EHL) model that is capable of handling practical cases with 3D machined roughness under severe operating conditions and considering the effect of arbitrary entrainment angle. Obtained results from sample cases show that the simulation model developed can be used as an engineering tool for spiral bevel and hypoid gears design optimization and strength prediction.


Sign in / Sign up

Export Citation Format

Share Document