A Review of Ground-Effect Diffuser Aerodynamics

2018 ◽  
Vol 141 (2) ◽  
Author(s):  
O. H. Ehirim ◽  
K. Knowles ◽  
A. J. Saddington

The ground-effect diffuser has become a major aerodynamic device on open-wheel racing and sports cars. Accordingly, it is widely considered to be indispensable to their aerodynamic performance, largely due to its significant downforce contribution. However, the physics and characteristics that determine how it generates downforce and its application in the auto racing industry require an in-depth analysis to develop an understanding. Furthermore, research that could generate further performance improvement of the diffuser has not been defined and presented. For these reasons, this review attempts to create a systematic understanding of the physics that influence the performance of the ground-effect diffuser. As a means of doing this, the review introduces research data and observations from various relevant studies on this subject. It then investigates advanced diffuser concepts mainly drawn from the race car industry and also proposes a further research direction that would advance the aerodynamic performance of the diffuser. It is concluded that although the diffuser will continue to be paramount in the aerodynamic performance of racing cars, research is needed to identify means to further enhance its performance.

2016 ◽  
Vol 40 (2) ◽  
pp. 19-34 ◽  
Author(s):  
Andrija Buljac ◽  
Hrvoje Kozmar ◽  
Ivo Džijan

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiaona Zhang ◽  
Shufang Zhang ◽  
Shuaiheng Huai

In this article, we use a low-power iBeacon network to conduct an in-depth analysis and research on the principle of indoor positioning and adopt an efficient and fast positioning algorithm. Secondly, based on the obtained analysis, an iBeacon-based indoor positioning system is proposed to analyze how to use iBeacon for accurate positioning and whether it can effectively compensate for the current mainstream positioning system. We analyze the requirements of the iBeacon-based indoor positioning system and propose the design of this positioning system. We analyze the platform and environment for software development, design the general framework of the positioning system, and analyze the logical structure of the whole system, the structure of data flow, and the communication protocols between each module of the positioning system. Then, we analyze the functions of the server module and the client module of the system, implement the functions of each module separately, and debug the functions of each module separately after each module is implemented. The feasibility of the algorithm and the performance improvement are confirmed by the experimental data. Our results show that the communication distance is improved by approximately 20.25% and the accuracy is improved by 5.62% compared to other existing results.


2007 ◽  
Vol 51 (02) ◽  
pp. 182-186
Author(s):  
Tracie J. Barber

The accurate prediction of ground effect aerodynamics is an important aspect of wing-in-ground (WIG) effect vehicle design. When WIG vehicles operate over water, the deformation of the nonrigid surface beneath the body may affect the aerodynamic performance of the craft. The likely surface deformation has been considered from a theoretical and numerical position. Both two-dimensional and three-dimensional cases have been considered, and results show that any deformation occurring on the water surface is likely to be caused by the wing tip vortices rather than an increased pressure distribution beneath the wing.


2007 ◽  
Vol 111 (1126) ◽  
pp. 797-806 ◽  
Author(s):  
G. Doig ◽  
T. J. Barber ◽  
E. Leonardi ◽  
A. J. Neely

Abstract The influence of flow compressibility on a highly-cambered inverted aerofoil in ground effect is presented, based on two-dimensional computational studies. This type of problem has relevance to open-wheel racing cars, where local regions of high-speed subsonic flow form under favourable pressure gradients, even though the maximum freestream Mach number is typically considerably less than Mach 0·3. An important consideration for CFD users in this field is addressed in this paper: the freestream Mach number at which flow compressibility significantly affects aerodynamic performance. More broadly, for aerodynamicists, the consequences of this are also considered. Comparisons between incompressible and compressible CFD simulations are used to identify important changes to the flow characteristics caused by density changes, highlighting the inappropriateness of incompressible simulations of ground effect flows for freestream Mach numbers as low as 0·15.


Author(s):  
Ankit Bhai Patel ◽  
K. Viswanath ◽  
Dhyanjyoti Deb Nath

Performance enhancement in terms of stall margin increment, increased pressure rise coefficient and increased efficiency is of great need for low speed axial fans. Stacking line modifications in terms of sweep, skew, dihedral or combination of these, as well as blade tip geometry modifications are assumed to be one of the ways to achieve finite performance improvement. Non radial stacking of blade profiles modifies secondary flows, tip vortex effects, hub passage vortex and thus affects aerodynamic performance parameters such as stall margin, efficiency, pressure rise, blade loading. In literature many studies have confined to comparison of few cases which led to conflicting results as modification of stacking line may have different effects in different cases. In the present work, comparison of performance of axial fan rotor with three different blade configurations BSL (baseline), SWP (swept blade) and EXTN (swept blade with extended tip) are considered. The BSL configuration is designed on basis of non-free vortex design. The SWP configuration is obtained by shifting radial stacking line of the BSL in axial flow direction by 10° (Forward sweep). The EXTN configuration is obtained by extending tip profile on pressure surface as well as suction surface by 3% locally. Experiments have been conducted on these three configurations to study effects of these modifications on aerodynamic performance. The flow field has been surveyed using Kiel probe, Three hole pressure probe at many flow rates starting from fully open to fully closed. Unsteady flow analysis at exit of rotors of all configurations is carried out using fast response pressure probe. Experimental results show slight performance improvement in terms of increased stall margin, efficiency, as well as total pressure rise for SWP rotor as well as EXTN rotor compared to BSL rotor at low flow coefficients.


Author(s):  
Carlo Cravero

A very detailed experimental case of a reversed profile in ground effect has been selected in the open literature and the available experimental data have been used as reference data for CFD analysis. The CFD approach has been used to predict the aerodynamic performance of the profile at different heights with respect to the ground: from the freestream case (no ground effect) to a low height where the stall on the suction surface limits the profile operation. Different CFD codes have been used starting with a well-known commercial code to different open source codes. The set of analysis with the commercial code has allowed the setup of the mesh to have the best accuracy from the simulations. The same grids have been used for the other codes in order to directly compare the solver properties without mesh influence. The results obtained by the codes are compared and discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Nauman Ali Khan ◽  
Wuyang Zhou ◽  
Mudassar Ali Khan ◽  
Ahmad Almogren ◽  
Ikram Ud Din

Social Internet of Things (SIoT) is a variation of social networks that adopt the property of peer-to-peer networks, in which connections between the things and social actors are automatically established. SIoT is a part of various organizations that inherit the social interaction, and these organizations include industries, institutions, and other establishments. Triadic closure and homophily are the most commonly used measures to investigate social networks’ formation and nature, where both measures are used exclusively or with statistical models. The triadic closure patterns are mapped for actors’ communication behavior over a location-based social network, affecting the homophily. In this study, we investigate triads emergence in homophilic social networks. This evaluation is based on the empirical review of triads within social networks (SNs) formed on Big Data. We utilized a large location-based dataset for an in-depth analysis, the Chinese telecommunication-based anonymized call detail records (CDRs). Two other openly available datasets, Brightkite and Gowalla, were also studied. We identified and proposed three social triad classes in a homophilic network to feature the correlation between social triads and homophily. The study opened a promising research direction that relates the variation of homophily based on closure triads nature. The homophilic triads are further categorized into transitive and intransitive groups. As our concluding research objective, we examined the relative triadic throughput within a location-based social network for the given datasets. The research study attains significant results highlighting the positive connection between homophily and a specific social triad class.


Sign in / Sign up

Export Citation Format

Share Document