Intentional Response Reduction by Harmonic Mistuning of Bladed Disks With Aerodynamic Damping

Author(s):  
Sebastian Willeke ◽  
Lukas Schwerdt ◽  
Lars Panning-von Scheidt ◽  
Jörg Wallaschek

A harmonic mistuning concept for bladed disks is analyzed in order to intentionally reduce the forced response of specific modes below their tuned amplitude level. By splitting a mode pair associated with a specific nodal diameter pattern, the lightly damped traveling wave mode of the nominally tuned blisk is superposed with its counter-rotating complement. Consequently, a standing wave is formed in which the former wave train benefits from an increase in aerodynamic damping. Unlike previous analyses of randomly perturbed configurations, the mode-specific stabilization is intentionally promoted through adjusting the harmonic content of the mistuning pattern (MT). Through a reorientation of the localized mode shapes in relation to the discrete blades, the response is additionally attenuated by an amount of up to 7.6%. The achievable level of amplitude reduction is analytically predicted based on the properties of the tuned system. Furthermore, the required degree of mistuning for a sufficient separation of a mode pair is derived.

Author(s):  
Sebastian Willeke ◽  
Lukas Schwerdt ◽  
Lars Panning-von Scheidt ◽  
Jörg Wallaschek

A harmonic mistuning concept for bladed disks is analyzed in order to intentionally reduce the forced response of specific modes below their tuned amplitude level. By splitting a mode pair associated with a specific nodal diameter pattern, the lightly damped traveling wave mode of the nominally tuned blisk is superposed with its counter-rotating complement. Consequently, a standing wave is formed in which the former wave train benefits from an increase in aerodynamic damping. Unlike previous analyses of randomly perturbed configurations, the mode-specific stabilization is intentionally promoted through adjusting the harmonic content of the mistuning pattern. Through a re-orientation of the localized mode shapes in relation to the discrete blades, the response is additionally attenuated by an amount of up to 7.6 %. The achievable level of amplitude reduction is analytically predicted based on the properties of the tuned system. Furthermore, the required degree of mistuning for a sufficient separation of a mode pair is derived.


Author(s):  
Marlin J. Kruse ◽  
Christophe Pierre

The results of an experimental investigation on the effects of random blade mistuning on the forced dynamic response of bladed disks are reported. Two experimental specimens are considered: a nominally periodic twelve-bladed disk with equal blade lengths, and the corresponding mistuned bladed disk, which features slightly different blades of random lengths. Both specimens are subject to traveling-wave excitations delivered by piezo-electric actuators. The primary aim of the experiment is to demonstrate the occurrence of an increase in forced response blade amplitudes due to mistuning, and to verify analytical predictions about the magnitude of these increases. In particular, the impact of localized mode shapes, engine order excitation, and disk structural coupling on the sensitivity of forced response amplitudes to blade mistuning is reported. This work reports one of the first systematic experiments carried out to demonstrate and quantify the effect of mistuning on the forced response of bladed disks.


Author(s):  
K. Vogel ◽  
A. D. Naidu ◽  
M. Fischer

The prediction of aerodynamic damping is a key step towards high fidelity forced response calculations. Without the knowledge of absolute damping values, the resulting stresses from forced response calculations are often afflicted with large uncertainties. In addition, with the knowledge of the aerodynamic damping the aeroelastic contribution to mistuning can be considered. The first section of this paper compares two methods of one-way-coupled aerodynamic damping computations on an axial turbine. Those methods are: the aerodynamic influence coefficient, and the travelling wave mode method. Excellent agreement between the two methods is found with significant differences in required computational time. The average deviation between all methods for the transonic turbine is 4%. Additionally, the use of transient blade row methods with phase lagged periodic boundaries are investigated and the influence of periodic boundaries on the aerodynamic influence coefficients are assessed. A total of 23 out of 33 passages are needed to remove all influence from the periodic boundaries for the present configuration. The second part of the paper presents the aerodynamic damping calculations for a centrifugal compressor. Simulations are predominantly performed using the aerodynamic influence coefficient approach. The influence of the periodic boundaries and the recirculation channel is investigated. All simulations are performed on a modern turbocharger turbine and centrifugal compressor using ANSYS CFX V17.0 with an inhouse pre- and post-processing procedure at ABB Turbocharging. The comparison to experimental results concludes the paper.


Author(s):  
Bernd Beirow ◽  
Felix Figaschewsky ◽  
Arnold Kühhorn ◽  
Alfons Bornhorn

The potential of intentional mistuning to reduce the maximum forced response is analyzed within the development of an axial turbine blisk for ship diesel engine turbocharger applications. The basic idea of the approach is to provide an increased aerodynamic damping level for particular engine order excitations and mode shapes without any significant distortions of the aerodynamic performance. The mistuning pattern intended to yield a mitigation of the forced response is derived from an optimization study applying genetic algorithms. Two blisk prototypes have been manufactured a first one with and another one without employing intentional mistuning. Hence, the differences regarding the real mistuning and other modal properties can be experimentally determined and evaluated as well. In addition, the experimental data basis allows for updating structural models which are well suited to compute the forced response under operational conditions. In this way, the real benefit achieved with the application of intentional mistuning is demonstrated.


Author(s):  
Seif ElMasry ◽  
Arnold Kühhorn ◽  
Felix Figaschewsky

Abstract This paper aims to study the effect of varying the working line of a compressor onto the forced response vibrations of the blades of an integrally bladed disk (blisk). The investigated rotor belongs to a transonic research compressor, where various probes are placed to measure flow data at all stations and analyze blade vibrations. A single-passage CFD model of all compressor blade-rows is used for steady computations. Using a finite element model, the natural frequencies and mode shapes of the blisk across the operational range of the compressor are predicted. Thus, resonance conditions can be identified from the Campbell diagram. The variation of the compressor working line is investigated at 90% of the maximum shaft speed, where the resonance condition of the 11th blade mode family and the engine order corresponding to the aerodynamic distortion from the upstream stator vane is predicted. Using a single-passage model, time-accurate simulations of the investigated rotor are executed at various operating points, which cover the operational range of the compressor between choke and stall conditions. Aerodynamic damping ratios are calculated using the aerodynamic influence coefficients method at each point, in order to predict the resulting vibration amplitudes of the blades. Relatively high amplitudes of the modal aerodynamic forces are observed at the low working line. A detailed post-processing analysis is performed, as the change of flow incidence contributes largely in the increase of modal aerodynamic forces on the blade. The aerodynamic damping ratios increase with higher working lines, where the rotor achieves relatively higher pressure ratios. However, the damping decreases rapidly close to stall conditions. The trend of the predicted vibration amplitudes is compared to strain gauge measurements from the rig, which are registered during multiple acceleration maneuvers performed over different working lines. A strong correlation between the predicted and measured trends of the forced response vibration is witnessed.


Author(s):  
Jie Hong ◽  
Lulu Chen ◽  
Yanhong Ma ◽  
Xin Yang

Friction at blade-disk joints is an important source of damping that reduces low frequency resonant amplitudes to acceptable levels in blade-disk assemblies. An effective method is proposed to predict nonlinear forced response of bladed disks taking account of the nonlinear force at blade-disk joints in frequency domain, which syncretizes the excellencies of harmonic balance method, dynamic softness method and tracking motion method. Constrained Mode Shapes are introduced to express the relative motion which occurs at the contact interfaces of blade roots. Compared to using free mode shapes, fewer number of constrained mode shapes is required in order to obtain the accurate resonant response of a system with friction dampers when the contact state is fully stick. It is more efficient to predict the nonlinear forced response of bladed disks taking account of the nonlinear force at blade-disk joints. Based on this method, the effect of Boundary Conditions on the resonant frequencies and forced response levels under different engine rotational speeds is investigated. Large error in the prediction of forced response levels under low engine rotational speed by using traditional methods is found. The effects of preload distribution at blade roots and excitation level are also investigated.


Author(s):  
Marc P. Mignolet ◽  
Alejandro Rivas-Guerra

The focus of the present investigation is on the estimation of the dynamic properties, i.e. masses, stiffnesses, natural frequencies, mode shapes and their statistical distributions, of turbomachine blades to be used in the accurate prediction of the forced response of mistuned bladed disks. As input to this process, it is assumed that the lowest natural frequencies of the blades alone have been experimentally measured, for example in a broach block test. Since the number of measurements is always less than the number of unknowns, this problem is indeterminate in nature. Two distinct approaches will be investigated to resolve the shortfall of data. The first one relies on the imposition of as many constraints as needed to insure a unique solution to this identification problem. Specifically, the mode shapes and modal masses of the blades are set to their design/tuned counterparts while the modal stiffnesses are varied from blade-to-blade to match the measured natural frequencies. The second approach, based on the maximum likelihood principle, yields estimates of all the structural parameters of the blades through the minimization of a specified “cost function”. The accuracy of these two techniques in predicting the forced response of mistuned bladed disks will be assessed on simple dynamic models of the blades.


Author(s):  
Marlin J. Kruse ◽  
Christophe Pierre

The results of an experimental investigation of the effects of random blade mistuning on the free dynamic response of bladed disks are reported. Two experimental specimens are considered: a nominally periodic twelve-bladed disk with equal blade lengths, and the corresponding mistuned bladed disk, which features slightly different, random blade lengths. In the experiment, both the spatially extended modes of the tuned system and the localized modes of the mistuned system are identified. Particular emphasis is placed on the transition to localized mode shapes as the modal density in various frequency regions increases. Excellent qualitative and quantitative agreement is obtained between experimental measurements and results obtained by finite element analysis. Experimental results are additionally used to validate a component mode-based, reduced-order modeling technique for bladed disks. This work reports the first systematic experiment carried out to demonstrate the occurrence of vibration localization in bladed disks.


Author(s):  
Sebastian Tatzko ◽  
Lars Panning von-Scheidt ◽  
Joerg Wallaschek

In the field of turbo machinery design frictional coupling has been found to be a low cost method to increase the mechanical damping of bladed disks. Underplatform dampers (UPD’s) are commonly used which are metal devices pressed against the blades by centrifugal forces. The main task is to find the optimum value of the contact normal force to maximize energy dissipation. This optimum strongly depends on the excitation of the structure. Traveling waves are excited by engine order excitation and flutter. Flutter caused by fluid structure interaction can be reduced by intentional mistuning of the bladed disk whereas forced response levels will be typically increased by mistuning. A compromise is alternate mistuning. The present paper deals with the influence of alternate mistuning on frictional coupling of blisks. Firstly, the dynamics of a tuned blisk are explained with a simplified lumped mass cyclic oscillator model. It is pointed out that eigenfrequencies of traveling waves around the blisk are influenced by structural coupling. Alternate mistuning leads to mode coupling with the possibility of energy transfer. The performance of friction coupling strongly depends on the nodal diameter mode shape of vibration which is stated analytically for pure Coulomb sliding contact. Following this, a simplified blisk model with underplatform dampers is developed to analyze alternate mistuning and frictional coupling. The simulation results show a significant influence of the mistuning on the damping performance.


Author(s):  
John Judge ◽  
Christophe Pierre ◽  
Oral Mehmed

The results of an experimental investigation on the effects of random blade mistuning on the forced dynamic response of bladed disks are reported. The primary aim of the experiment is to gain understanding of the phenomena of mode localization and forced response blade amplitude magnification in bladed disks. A stationary, nominally periodic, twelve-bladed disk with simple geometry is subjected to a traveling-wave, out-of-plane, “engine order” excitation delivered via phase-shifted control signals sent to piezo-electric actuators mounted on the blades. The bladed disk is then mistuned by the addition of small, unequal weights to the blade tips, and it is again subjected to a traveling wave excitation. The experimental data is used to verify analytical predictions about the occurrence of localized mode shapes, increases in forced response amplitude, and changes in resonant frequency due to the presence of mistuning. Very good agreement between experimental measurements and finite element analysis is obtained. The out-of-plane response is compared and contrasted with the previously reported in-plane mode localization behavior of the same test specimen. This work also represents an important extension of previous experimental study by investigating a frequency regime in which modal density is lower but disk-blade interaction is significantly greater.


Sign in / Sign up

Export Citation Format

Share Document