To Study the Role of WC Reinforcement and Deep Cryogenic Treatment on AZ91 MMNC Wear Behavior Using Multilevel Factorial Design

2019 ◽  
Vol 141 (4) ◽  
Author(s):  
P. Karuppusamy ◽  
K. Lingadurai ◽  
V. Sivananth

The present investigation explores the collective outcome of hard particle reinforcement with deep cryogenic treatment (DCT) on wear responses of magnesium metal matrix nanocomposites (MMNC). A multilevel factorial design of experiments with control factors of applied load (20 and 40 N), sliding speed (1.3, 1.7, 2.2, and 3.3 m/s), reinforcement % (0% and 1.5%), and cryogenic treatment (cryogenic-treated and nontreated) was deployed. Around 1.5 wt % WC-reinforced MMNC were fabricated using stir-casting process. DCT was performed at −190 °C with soaking time of 24 h. The dry sliding wear trials were done on pin-on-disk tribometer with MMNC pin and EN8 steel disk for a constant sliding distance of 2 km. The WC reinforcement contributed toward the improvement in wear rate of MMNC appreciably by absorbing the load and frictional heat at all loads and speeds. During DCT of AZ91, the secondary ß-phase (Mg17Al12) was precipitated that enriched the wear resistance, only for the higher load of 40 N. Scanning electron microscope analyses of the cryogenic-treated MMNC ensured the existence of both ß-phase precipitates and WC in the contact area. As a result, the adhesiveness of this pin was lesser, which attributed to the improved wear resistance (approximately 33%) as compared to base alloy. The coefficient of friction was also less for cryogenic-treated MMNC. A regression analysis was made to correlate the control elements and the responses.

2021 ◽  
Vol 118 (6) ◽  
pp. 614
Author(s):  
Chellamuthu Ramesh Kumar ◽  
Subramanian Baskar ◽  
Ganesan Ramesh ◽  
Pathinettampadian Gurusamy ◽  
Thirupathy Maridurai

In this research, investigations were carried out on Al6061 base alloy with the changing weight percentage of silicon carbide (SiC) and boron carbide (B4C) with keeping the amount of talc constant. The main objective of this present study was to improve the wear resistance of aluminum alloy using SiC/B4C/talc ceramic particles using stir-casting technique and how the eco-friendly talc content influencing the solid lubricity during the abrasion process. The experiments were conducted via orthogonal array of L27 using Taguchi’s method. The optimum value along with the coefficient of friction was obtained on the basis of grey relational equations and ANOVA, which helped in analysis of most influential input parameters such as applied load, sliding speed, sliding distance and percentage of reinforcement. Conformation tests were performed for the purpose of validation of the experimental results. The specimens were analyzed using scanning electron microscope (SEM) with EDX for micro structural studies. The SiC, B4C and talc presence in the composite helped to improve the mechanical properties, according to the results. The presence of solid lubricant talc as reinforcement to the aluminum hybrid composite reduced the wear properties and decreased the co-efficient friction. These wear resistance improved aluminum metal matrix composites could be used in automobile, defense and domestic applications where high strength and wear resistance required with lesser specific weight.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1038 ◽  
Author(s):  
Pello Jimbert ◽  
Maider Iturrondobeitia ◽  
Julen Ibarretxe ◽  
Roberto Fernandez-Martinez

The effects of deep cryogenic treatment (DCT) on the wear behavior of different tool steels have been widely reported in the scientific literature with uneven results. Some tool steels show a significant improvement in their wear resistance when they have been cryogenically treated while others exhibit no relevant amelioration or even a reduction in their wear resistance. In this study, the influence of DCT was investigated for a grade that has been barely studied in the scientific literature, the AISI A8 air-hardening medium-alloy cold work tool steel. Several aspects were analyzed in the present work: the wear resistance of the alloy, the internal residual stress, and finally the secondary carbide precipitation in terms of lengths and occupied area and its distribution into the microstructure. The results revealed a reduction in the wear rate of about 14% when the AISI A8 was cryogenically treated before tempering. The number of carbides that precipitated into the microstructure was 6% higher for the cryogenically treated samples, increasing from 0.68% to 0.73% of the total area they covered. Furthermore, the distribution of the carbides into the microstructure was more homogenous for the cryogenically treated samples.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Volker Franco Steier ◽  
Edgar Sobral Ashiuchi ◽  
Lutz Reißig ◽  
José Alexander Araújo

The aim of this work is to evaluate the effect of a deep cryogenic treatment (DCT) on the wear behavior and on the microstructure of an aluminum alloy. In order to compare the level of improvement on the wear resistance provided by the DCT with a more traditional technique, a test matrix which included DCT, CrN coated specimens, and combinations of both modification methods was conducted. The wear behavior was investigated using microabrasive wear tests. The cryogenic treated specimens proved to have similar low wear rates as the specimens coated with CrN. The most distinct improvement was reached with a combination of both techniques. In the case of the DCT, the performed microstructural analysis identified the generation of additional GP-zones as the reason for the improved wear resistance.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1257-1263
Author(s):  
Cosme Roberto Moreira Silva ◽  
Tiago F.O. Melo ◽  
José A. Araújo ◽  
J.L.A. Ferreira ◽  
S.J. Gobbi

Wear resistance of tool steels can be increased with deep cryogenic treatment (DCT) application. Mechanisms related to DCT are still not completely understood. Microabrasive wear resistance of cryogenically treated samples of AISI D2 steel was evaluated in terms of austenitization temperature at heat treatment cycle and quenching steps related to DCT. X-ray difractometry, scanning and optical microscopy and quantitative evaluation of carbides with image analysis were carried out aiming material characterization. For samples subjected to higher austenitization temperatures, the DCT treatment does not increase abrasive wear resistance. For samples treated at lower austenitization temperature, the DCT treatment results on 44% increase at abrasive resistance. This effect is correlated to the increase of the amount of fine carbides distributed at samples matrices cryogenically treated.


2021 ◽  
Vol 1016 ◽  
pp. 1423-1429
Author(s):  
Kaweewat Worasaen ◽  
Andreas Stark ◽  
Karuna Tuchinda ◽  
Piyada Suwanpinij

A matrix type high speed steel YXR3 designed for a combination of wear resistance and toughness is investigated for its mechanical properties after hardening by deep cryogenic treatment follow by tempering. The deep cryogenic quenching carried out at -200 °C for 36 hours and the single step tempering results in an obvious improvement in wear resistance while balancing the toughness, comparing with the conventional quenching followed by a double tempering treatment. The quantitative image analysis reveals little difference in the MC carbide size distribution between tempering at different temperatures. The synchrotron high energy XRD confirms the MC type carbide with some evolution in its orientation together with tempered martensite approaching the BCC structure at higher temperatures. In contrary to the conventional quenching and tempering, the lowest tempering temperature at 200 °C yields a moderate drop in hardness with increase in surface toughness proportionally while exhibiting exceptional wear resistance. Such thermal cycle can be recommended for the industry both for the practicality and improved tool life.


2019 ◽  
Vol 36 (2) ◽  
pp. 206-215 ◽  
Author(s):  
Zhaobing Cai ◽  
Ran Chen ◽  
Jianguo Qian ◽  
Shujing Zheng ◽  
Shengyu Chen ◽  
...  

Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 296 ◽  
Author(s):  
Chao Sun ◽  
Nannan Lu ◽  
Huan Liu ◽  
Xiaojun Wang ◽  
Xiaoshi Hu ◽  
...  

In this study, the dry sliding wear behaviors of SiC particle reinforced AZ91D matrix composites fabricated by stirring casting method were systematically investigated. The SiC particles in as-cast composites exhibited typical necklace-type distribution, which caused the weak interface bonding between SiC particles and matrix in particle-segregated zones. During dry sliding at higher applied loads, SiC particles were easy to debond from the matrix, which accelerated the wear rates of the composites. While at the lower load of 10 N, the presence of SiC particles improved the wear resistance. Moreover, the necklace-type distribution became more evident with the decrease of particle sizes and the increase of SiC volume fractions. Larger particles had better interface bonding with the matrix, which could delay the transition of wear mechanism from oxidation to delamination. Therefore, composites reinforced by larger SiC particles exhibited higher wear resistance. Similarly, owing to more weak interfaces in the composites with high content of SiC particles, more severe delamination occurred and the wear resistance of the composites was impaired.


Author(s):  
Akash Saxena ◽  
Neera Singh ◽  
Bhupendra Singh ◽  
Devendra Kumar ◽  
Kishor Kumar Sadasivuni ◽  
...  

In the present work, phase, microstructure, and wear properties of Al2O3-reinforced Fe–Si alloy-based metal matrix nanocomposites have been studied. Composites using 2 wt.% and 5 wt.% of Si and rest Fe powder mix were synthesized via powder metallurgy and sintered at different temperature schedules. Iron–silicon alloy specimens were found to have high hardness and high wear resistance in comparison to pure iron specimens. Addition of 5 wt.% and 10 wt.% alumina reinforcement in Fe–Si alloy composition helped in developing iron aluminate (FeAl2O4) phase in composites which further improved the mechanical properties i.e. high hardness and wear resistance. Formation of iron aluminate phase occurs due to reactive sintering between Fe and Al2O3 particles. It is expected that the improved behavior of prepared nanocomposites as compared to conventional metals will be helpful in finding their use for wide industrial applications.


Sign in / Sign up

Export Citation Format

Share Document