An Experimental and Numerical Study of Dieless Water Jet Incremental Microforming

Author(s):  
Yi Shi ◽  
Weizhao Zhang ◽  
Jian Cao ◽  
Kornel F. Ehmann

Conventional single-point incremental forming (SPIF) is already in use for small batch prototyping and fabrication of customized parts from thin sheet metal blanks by inducing plastic deformation with a rigid round-tip tool. The major advantages of the SPIF process are its high flexibility and die-free nature. In lieu of employing a rigid tool to incrementally form the sheet metal, a high-speed water jet as an alternative was proposed as the forming tool. Since there is no tool-workpiece contact in this process, unlike in the traditional SPIF process, no lubricant and rotational motion of the tool are required to reduce friction. However, the geometry of the part formed by water jet incremental microforming (WJIMF) will no longer be controlled by the motion of the rigid tool. On the contrary, process parameters such as water jet pressure, stage motion speed, water jet diameter, blank thickness, and tool path design will determine the final shape of the workpiece. This paper experimentally studies the influence of the above-mentioned key process parameters on the geometry of a truncated cone shape and on the corresponding surface quality. A numerical model is proposed to predict the shape of the truncated cone part after WJIMF with given input process parameters. The results prove that the formed part's geometric properties predicted by the numerical model are in excellent agreement with the actually measured ones. Arrays of miniature dots, channels, two-level truncated cones, and letters were also successfully fabricated on stainless-steel foils to demonstrate WJIMF capabilities.

2018 ◽  
Author(s):  
Yi Shi ◽  
Jian Cao ◽  
Kornel F. Ehmann

Compared to the conventional single-point incremental forming (SPIF) processes, water jet incremental micro-forming (WJIMF) utilizes a high-speed and high-pressure water jet as a tool instead of a rigid round-tipped tool to fabricate thin shell micro objects. Thin foils were incrementally formed with micro-scale water jets on a specially designed testbed. In this paper, the effects on the water jet incremental micro-forming process with respect to several key process parameters, including water jet pressure, relative water jet diameter, sheet thickness, and feed rate, were experimentally studied using stainless steel foils. Experimental results indicate that feature geometry, especially depth, can be controlled by adjusting the processes parameters. The presented results and conclusions provide a foundation for future modeling work and the selection of process parameters to achieve high quality thin shell micro products.


2013 ◽  
Vol 554-557 ◽  
pp. 1375-1381 ◽  
Author(s):  
Laurence Giraud-Moreau ◽  
Abel Cherouat ◽  
Jie Zhang ◽  
Houman Borouchaki

Recently, new sheet metal forming technique, incremental forming has been introduced. It is based on using a single spherical tool, which is moved along CNC controlled tool path. During the incremental forming process, the sheet blank is fixed in sheet holder. The tool follows a certain tool path and progressively deforms the sheet. Nowadays, numerical simulations of metal forming are widely used by industry to predict the geometry of the part, stresses and strain during the forming process. Because incremental forming is a dieless process, it is perfectly suited for prototyping and small volume production [1, 2]. On the other hand, this process is very slow and therefore it can only be used when a slow series production is required. As the sheet incremental forming process is an emerging process which has a high industrial interest, scientific efforts are required in order to optimize the process and to increase the knowledge of this process through experimental studies and the development of accurate simulation models. In this paper, a comparison between numerical simulation and experimental results is realized in order to assess the suitability of the numerical model. The experimental investigation is realized using a three-axis CNC milling machine. The forming tool consists in a cylindrical rotating punch with a hemispherical head. A subroutine has been developed to describe the tool path from CAM procedure. A numerical model has been developed to simulate the sheet incremental forming process. The finite element code Abaqus explicit has been used. The simulation of the incremental forming process stays a complex task and the computation time is often prohibitive for many reasons. During this simulation, the blank is deformed by a sequence of small increments that requires many numerical increments to be performed. Moreover, the size of the tool diameter is generally very small compared to the size of the metal sheet and thus the contact zone between the tool and the sheet is limited. As the tool deforms almost every part of the sheet, small elements are required everywhere in the sheet resulting in a very high computation time. In this paper, an adaptive remeshing method has been used to simulate the incremental forming process. This strategy, based on adaptive refinement and coarsening procedures avoids having an initially fine mesh, resulting in an enormous computing time. Experiments have been carried out using aluminum alloy sheets. The final geometrical shape and the thickness profile have been measured and compared with the numerical results. These measurements have allowed validating the proposed numerical model. References [1] M. Yamashita, M. Grotoh, S.-Y. Atsumi, Numerical simulation of incremental forming of sheet metal, J. Processing Technology, No. 199 (2008), p. 163 172. [2] C. Henrard, A.M. Hbraken, A. Szekeres, J.R. Duflou, S. He, P. Van Houtte, Comparison of FEM Simulations for the Incremental Forming Process, Advanced Materials Research, 6-8 (2005), p. 533-542.


2018 ◽  
Vol 783 ◽  
pp. 148-153
Author(s):  
Muhammad Sajjad ◽  
Jithin Ambarayil Joy ◽  
Dong Won Jung

Incremental sheet metal forming, is a non-conventional machining process which offers higher formability, flexibility and low cost of production than the traditional conventional forming process. Punch or tool used in this forming process consecutively forces the sheet to deform locally and ultimately gives the target profile. Various machining parameters, such as type of tool, tool path, tool size, feed rate and mechanical properties of sheet metal, like strength co-efficient, strain hardening index and ultimate tensile strength, effects the forming process and the formability of final product. In this research paper, Single Point Incremental Forming was simulated using Dassault system’s Abaqus 6.12-1 and results are obtained. Results of sheet profile and there change in thickness is investigated. For this paper, we simulated the process in abaqus. The tool diameter and rotational speed is find out for the production of parts through incremental forming. The simulation is done for two type of material with different mechanical properties. Various research papers were used to understand the process of incremental forming and its simulation.


Author(s):  
Shamik Basak ◽  
K Sajun Prasad ◽  
Amarjeet Mehto ◽  
Joy Bagchi ◽  
Y Shiva Ganesh ◽  
...  

Prototyping through incremental sheet forming is emerging as a latest trend in the manufacturing industries for fabricating personalized components according to customer requirement. In this study, a laboratory scale single-point incremental forming test setup was designed and fabricated to deform AA6061 sheet metal plastically. In addition, response surface methodology with Box–Behnken design technique was used to establish different regression models correlating input process parameters with mechanical responses such as angle of failure, part depth per unit time and surface roughness. Correspondingly, the regression models were implemented to optimize the input process parameters, and the predicted responses were successfully validated at the optimal conditions. It was observed that the predicted absolute error for angle of failure, part depth per unit time and surface roughness responses was approximately 0.9%, 4.4% and 6.3%, respectively, for the optimum parametric combination. Furthermore, the post-deformation responses from an optimized single point incremental forming truncated cone were correlated with microstructural evolution. It was observed that the peak hardness and highest areal surface roughness of 158 ± 9 HV and 1.943 μm, respectively, were found near to the pole of single-point incremental forming truncated cone, and the highest major plastic strain at this region was 0.80. During incremental forming, a significant increase in microhardness occurred due to grain refinement, whereas a substantial increase in the Brass and S texture component was responsible for the increase in the surface roughness.


2006 ◽  
Vol 33 (9-10) ◽  
pp. 961-967 ◽  
Author(s):  
Jyri A. Porter ◽  
Yrjö A. Louhisalmi ◽  
Jussi A. Karjalainen ◽  
Sascha Füger

Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 278 ◽  
Author(s):  
Seung Hwan Lee

CMT welding sources are garnering attention as alternative heat sources for wire arc additive manufacturing because of their low-heat input. A comprehensive experimental and numerical study on the multi-layer deposition of STS316L was performed to investigate effect of heat accumulation during the deposition. The numerical model which is appropriate for WAMM was developed considering the characteristics of the CMT heat source for the first time. Using a high-speed camera, the transient behavior of the CMT arc was investigated, and applied to the heat source of the numerical model. The model was then used to analyze 10-layered deposits of STS316L, fabricated using CMT-based WAAM. During deposition, the temperature is measured using a pyrometer to analyze the microstructure, after which the cooling rate of each layer is estimated. The measured and simulated SDAS were compared. Based on the comparison, a guideline for the equation regarding the SDAS size and cooling rate was suggested.


Author(s):  
Zachary C. Reese ◽  
Brandt J. Ruszkiewicz ◽  
Chetan P. Nikhare ◽  
John T. Roth

Incremental forming is a nontraditional forming method in which a spherical tool is used to asymmetrically deform sheet metal without the need for expensive allocated dies. Incremental forming employs a tool path similar to that used when CNC milling. Hence, when forming a part, the forming tool makes a series of passes circumferentially around the workpiece, gradually spirally stepping down in the z-axis on each sequential pass. This tool path deforms the sheet metal stock into the final, desired shape. These passes can start from the outer radius of the part and work in (Out to In, OI forming) or they can start from the center of the shape and work outward (In to Out, IO forming). As with many sheet metal operations, springback is a big concern during the incremental forming process. During the deformation process, residual stresses are created within the workpiece causing the final formed shape to springback when it is unclamped, sometimes very significantly. The more complex the geometry of the final part and the more total deformation that occurs when forming the geometry, the greater the residual stresses that are generated within the part. The residual stresses that have built up in the piece cause more significant distortion to the part when it is released from the retaining fixturing. This paper examines how the step size (in the z direction), OI vs. IO forming, and final part geometry affect the total springback in a finished piece. For all of these tests 0.5 mm thick sheets of 2024-T3 aluminum were used to form both the truncated pyramid and truncated cone shape. From this investigation it was found that smaller step sizes result in greater springback, IO is significantly less effective in forming the part (due to workpiece tearing), and final part geometry plays an important role due to the creation of residual stresses that exist in corners.


Sign in / Sign up

Export Citation Format

Share Document