Methodology for the Measurement of the Heat Partitioning by Thermal Imaging in the Orthogonal Cutting Process

2019 ◽  
Vol 141 (7) ◽  
Author(s):  
T. Augspurger ◽  
T. Bergs ◽  
B. Döbbeler ◽  
A. Lima

The thermal conditions like temperature distribution and heat fluxes during metal cutting have a major influence on the machinability, the tool life time, and the metallurgical structure of the work piece material. Though numerous analytical and experimental efforts have been developed in order to understand the thermal conditions in metal cutting, many questions still prevail. So, the exact form, distribution, and intensity of heat sources in the primary and secondary shear zone, which may describe the observed temperature distributions, are not explored to a satisfactory extend. On the other hand, the influence of the material properties like friction coefficient, heat conductivity, and shear strength is not yet fully understood. Another essential question is the heat flux partition among chip, work piece, and tool depending on process parameters and material. The particular novelty of the current investigation is a new methodological approach using modern thermal measurement system and postprocessing methods in order not only to measure the entire temperature field in the orthogonal cutting zone but also to calculate the affiliated heat flow distribution in the cutting process. Thus, the cutting process is treated as energy conversation process of the governing mechanical power into sensible heat. This point of view offers compatibility across process parameters and materials, thus new possibilities for process design.

1944 ◽  
Vol 11 (3) ◽  
pp. A168-A175 ◽  
Author(s):  
M. Eugene Merchant

Abstract The author presents a mathematical analysis of the geometry and mechanics of the metal-cutting process, covering two common types of geometry which occur in cutting. This analysis offers a key for the study of engineering problems in the field of metal cutting in terms of such fundamental quantities as strain, rate of shear, friction between chip and tool, shear strength of the metal, work done in shearing the metal and in overcoming friction, etc. The two cases covered are, in essence, that of a straight-edged cutting tool moving relative to the work-piece in a direction perpendicular to its cutting edge, termed “orthogonal cutting,” and that of a similar cutting tool so set that the cutting edge is oblique to the direction of relative motion of tool and work, termed “oblique cutting.” Equations are developed which permit the calculation of such quantities as those just enumerated from readily observable values. The theoretical findings are particularly applicable and significant in the case of present-day high-speed machining operations with sintered-carbide tools.


2018 ◽  
Vol 178 ◽  
pp. 03014
Author(s):  
Ana Maria Bocăneţ ◽  
Cristian Croitoru

This paper presents a study regarding the latest researches on cryogenic cooling used in metal cutting as an opportunity for achieving green manufacturing, in terms of cryogenic methods, cutting tools, effects on cutting process parameters, industrial solutions and some possible applications in the areas where this cooling method presents deficiencies.


2015 ◽  
Vol 727-728 ◽  
pp. 335-338 ◽  
Author(s):  
Song Jie Yu ◽  
Di Di Wang ◽  
Xin Chen

Cutting process is a typical non-linear deformation problem, which involves material non-linear, geometry non-linear and the state non-linear problem. Based on the elastic-plastic material deformation theory, this theme established a strain hardening model. Build the simulation model of two-dimensional orthogonal cutting process of workpiece and tool by the finite element method (FEM), and simulate the changes of cutting force and the process of chip formation in the machining process, and analyzed the cutting force, the situation of chip deformation. The method is more efficient and effective than the traditional one, and provides a new way for metal cutting theory, research of material cutting performance and cutting tool product development.


2019 ◽  
Vol 2 (02) ◽  
pp. 19-24
Author(s):  
Kasijanto Kasijanto ◽  
Sadar Wahjudi ◽  
Listiyono Listiyono ◽  
Muhammad Fakhruddin

Metal cutting process (cutting process) is to cut metal to get the shape and size and quality of the planned cutting surface. The metal cutting process is carried out with special tools, according to the type of cutting process. So the tools for one process cannot be used in another process, even for similar processes, the tools cannot be exchanged if the cutting plans are not the same. Lathe process is a machining process to produce cylindrical machine parts which are carried out using a Lathe. Its basic form can be defined as the machining process of the outer surface of cylindrical or flat lathe objects. Polyvinyl Chloride, commonly abbreviated as PVC, is the third-order thermoplastic polymer in terms of total usage in the world, after Polyethylene (PE) and Polypropylene (PP). Worldwide, more than 50% of PVC produced is used in construction. PVC is produced by polymerizing vinyl chloride monomers (CH2 = CHCl). Because 57% of its mass is chlorine, PVC is the polymer that uses the lowest petroleum feedstock among other polymers. This research follows up the selection of configuration of the lathe machining process using plastic work pieces. In this study, Maximat V13 lathe and PVC type plastic were used. The variation of machining processes are spindle rotation (320, 540, and 900 rpm), feeding speed (0.07, 0.14, and 0.28), the use of tool types (carbide and HSS) and cooling (without cooling, coolant, and oil). So, with this research, it is expected that the optimal parameters in determining the configuration of the lathe machining process on a PVC work piece to produce a good turning surface can be achieved  


1967 ◽  
Vol 89 (2) ◽  
pp. 347-355 ◽  
Author(s):  
Russell F. Henke

This paper is the latest of a continuing series on the subject of self-excited machine tool chatter. The representation of the metal cutting process as required by the previously developed closed-loop chatter theory is extended to oblique cutting with tools of practical shape and geometry. The cutting process parameters essential to proper application of the stability theory are found by an analytical formulation leading to a classical eigenvalue problem. Techniques are developed to determine the steady-state constant of proportionality between resultant cutting force and uncut chip area, the direction of resultant cutting force, and the direction of maximum cutting stiffness for any single-point cutting operation. In the process, a general method to predict steady-state oblique cutting forces is evolved. The method depends on certain experimentally justifiable assumptions and utilizes previously compiled orthogonal cutting data.


2015 ◽  
Author(s):  
Sunday J. Ojolo ◽  
Olumuwiya Agunsoye ◽  
Oluwole Adesina ◽  
Gbeminiyi M. Sobamowo

Temperature field in metal cutting process is one of the most important phenomena in machining process. Temperature rise in machining directly or indirectly determines other cutting parameters such as tool life, tool wear, thermal deformation, surface quality and mechanics of chip formation. The variation in temperature of a cutting tool in end milling is more complicated than any other machining operation especially in high speed machining. It is therefore very important to investigate the temperature distribution on the cutting tool–work piece interface in end milling operation. The determination of the temperature field is carried out by the analysis of heat transfer in metal cutting zone. Most studies previously carried out on the temperature distribution model analysis were based on analytical model and with the used of conventional machining that is continuous cutting in nature. The limitations discovered in the models and validated experiments include the oversimplified assumptions which affect the accuracy of the models. In metal cutting process, thermo-mechanical coupling is required and to carry out any temperature field determination successfully, there is need to address the issue of various forces acting during cutting and the frictional effect on the tool-work piece interface. Most previous studies on the temperature field either neglected the effect of friction or assumed it to be constant. The friction model at the tool-work interface and tool-chip interface in metal cutting play a vital role in influencing the modelling process and the accuracy of predicted cutting forces, stress, and temperature distribution. In this work, mechanistic model was adopted to establish the cutting forces and also a new coefficient of friction was also established. This can be used to simulate the cutting process in order to enhance the machining quality especially surface finish and monitor the wear of tool.


1978 ◽  
Vol 100 (1) ◽  
pp. 92-99
Author(s):  
N. Saravanja-Fabris ◽  
A. F. D’Souza

Chatter in metal cutting is a nonlinear self-excited vibration of the limit cycle type. This investigation is concerned with the analysis of chatter from the viewpoint of the describing function. Vibrations with different frequencies and amplitudes were superimposed on the steady feed motion of the tool in orthogonal cutting in order to simulate chatter. The relationships between the oscillating cutting and thrust forces and tool vibrations are discussed from the point of view of energy transfer and describing functions. Experimentally obtained describing functions of the dynamically varying cutting process are given. The stability of a typical machine tool structure under primary chatter conditions with dynamical cutting process represented by its describing function is discussed.


1960 ◽  
Vol 82 (2) ◽  
pp. 347-359 ◽  
Author(s):  
Fenton L. Bagley ◽  
Roy Mennell

The effects of lead addition in alloy steel upon the metal-cutting process were explored over a wide range of conditions. In particular, a range of cutting speeds (from 50 to 800 fpm) and workpiece hardness (from 230 to 450 Bhn) were investigated on one work-piece material (4340) using principally a carbide (C-6) cutting tool. Orthogonal (two-dimensional) data was taken to describe the metal-cutting process, and tool-life data were obtained by running a typical production tool to failure at the various cutting conditions. Several mechanisms to explain experimental results, including lead acting as a lubricant, are discussed.


2005 ◽  
Vol 128 (2) ◽  
pp. 435-444 ◽  
Author(s):  
Yiğit Karpat ◽  
Tuğrul Özel

In this paper, a predictive thermal and analytical modeling approach for orthogonal cutting process is introduced to conveniently calculate forces, stress, and temperature distributions. The modeling approach is based on the work material constitutive model, which depends on strain, strain rate, and temperature. In thermal modeling, oblique moving band heat source theory is utilized and analytically combined with modified Oxley’s parallel shear zone theory. Normal stress distribution on the tool rake face is modeled as nonuniform with a power-law relationship. Hence, nonuniform heat intensity at the tool-chip interface is obtained from the predicted stress distributions utilizing slip line field analysis of the modified secondary shear zone. Heat sources from shearing in the primary zone and friction at the tool-chip interface are combined, heat partition ratios are determined for temperature equilibrium to obtain temperature distributions depending on cutting conditions. Model validation is performed by comparing some experimental results with the predictions for machining of AISI 1045 steel, AL 6082-T6, and AL 6061-T6 aluminum. Close agreements with the experiments are observed. A set of detailed, analytically computed stress and temperature distributions is presented.


Sign in / Sign up

Export Citation Format

Share Document