scholarly journals Thin Gas Film Isothermal Condensation in Aerodynamic Bearings

2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Eliott Guenat ◽  
Jürg Schiffmann

Abstract High-speed small-scale turbomachinery for waste heat recovery and vapor compression cycles is typically supported on gas-lubricated bearings operating close to the saturation conditions of the lubricant. Under particular conditions, the gas film might locally reach the saturation pressure with potentially hazardous effects on the performance of the gas bearing. The present work introduces a model based on the Reynolds equation and the development of cavitation modeling in liquid-lubricated bearings for condensing gas bearings. The effect of condensation on load capacity and pressure and density profiles is investigated for two one-dimensional bearing geometries (parabolic and Rayleigh step) and varying operating conditions. The results suggest that the load capacity is generally negatively affected if condensation occurs. An experimental setup consisting of a Rayleigh-step gas journal bearing with pressure taps to measure the local fluid film pressure is presented and operated in R245fa in near-saturated conditions. The comparison between the evolution of the fluid film pressure under perfect gas and near saturation conditions clearly suggests the occurrence of condensation in the fluid film. These results are corroborated by the very good agreement with the model prediction.

Lubricants ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 18
Author(s):  
Eckhard Schüler ◽  
Olaf Berner

In high speed, high load fluid-film bearings, the laminar-turbulent flow transition can lead to a considerable reduction of the maximum bearing temperatures, due to a homogenization of the fluid-film temperature in radial direction. Since this phenomenon only occurs significantly in large bearings or at very high sliding speeds, means to achieve the effect at lower speeds have been investigated in the past. This paper shows an experimental investigation of this effect and how it can be used for smaller bearings by optimized eddy grooves, machined into the bearing surface. The investigations were carried out on a Miba journal bearing test rig with Ø120 mm shaft diameter at speeds between 50 m/s–110 m/s and at specific bearing loads up to 4.0 MPa. To investigate the potential of this technology, additional temperature probes were installed at the crucial position directly in the sliding surface of an up-to-date tilting pad journal bearing. The results show that the achieved surface temperature reduction with the optimized eddy grooves is significant and represents a considerable enhancement of bearing load capacity. This increase in performance opens new options for the design of bearings and related turbomachinery applications.


2016 ◽  
Vol 68 (3) ◽  
pp. 349-360 ◽  
Author(s):  
Amit Singla ◽  
Amit Chauhan

Purpose The current trend of modern industry is to use machineries which rotate at high speed along with the capability of carrying heavy rotor loads. This paper aims at static thermal analysis of two different profiles of non-circular journal bearings – a true elliptical bearing and orthogonal bearing. Design/methodology/approach The Reynolds equation has been solved through finite difference method to compute the oil film pressure. Parabolic temperature profile approximation technique has been used to solve the energy equation and thus used for computation of various bearing performance characteristics such as thermo-hydrodynamic oil film pressure, temperature, load capacity, Sommerfeld number and power loss characteristics across the bearing. The effect of ellipticity ratio on the bearing performance characteristics has also been obtained for both the elliptical and vertical offset bearing using three different commercially available grades of oil (Hydrol 32, 68 and 100). Findings It has been observed that the thermo-hydrodynamic pressure and temperature rise of the oil film is less in orthogonal bearing as compared to the true elliptical bearing for same operating conditions. The effect of ellipticity ratio of non-circularity on bearing performance parameters have been observed to be less in case of elliptical bearing as compared to orthogonal bearing. It has been concluded that though the rise in oil film temperature is high for true elliptical bearing, but still it should be preferred over orthogonal profile under study, as it has comparably good load-carrying capacity. Originality/value The performance parametric analysis will help the designers to select such kind of non-circular journal bearing for various applications.


2021 ◽  
Author(s):  
Harishkumar Kamat ◽  
Chandrakant R. Kini ◽  
Satish B. Shenoy

Abstract High-speed turbomachinery like turbine generators and marine propulsion systems uses special fluid film bearing called externally adjustable pad bearing due to their great advantages. The principal feature of this bearing is to alter the radial clearance and film thickness along the circumferential direction to improve the bearing performance parameters. In the present study, the effect of radial and tilt adjustment of 120° pad both in upward (or negative) and downward (or positive) direction on the bearing performance is predicted for various eccentricity ratios using the CFD technique. Later the influence of fluid film pressure on the bearing pad is examined using the FSI technique. Furthermore, the effect of eccentricity ratio on the bearing performance and also on pad structure is also analyzed using CFD coupled FSI analysis. The solution technique of the present numerical analysis is validated with the already published literature and the results are in good agreement. The numerical results suggest that for bearing with negative radial and negative tilt adjustment, bearing performance is superior compared to the other adjustments. However, the structural deformation is also significant for the negative radial and negative tilt adjustment. It is also observed that pad deformation increases with the increase in eccentricity ratio as there has been a rise in fluid film pressure.


Author(s):  
Oumayma Bounefour ◽  
Ahmed Ouadha

This paper examines through a thermodynamic analysis the feasibility of using waste heat from marine Diesel engines to drive a vapor compression refrigeration system. Several working fluids including propane, butane, isobutane and propylene are considered. Results showed that isobutane and Butane yield the highest performance, whereas propane and propylene yield negligible improvement compared to R134a for operating conditions considered.


Author(s):  
Hooshang Heshmat ◽  
José Luis Córdova

The theory underlying a novel method of gas compression driven by shear flow for next generation turbo-machinery is presented. The concept is based on the conversion of shaft power into hydrodynamic pressure and fluid flow that occur in the shear flow between a smooth rotating disk and a compliant surface counterface. This also holds for the inverse process, where gas expansion through the gap between the compliant surface and a shaft-mounted disk converts gas pressure into rotating power and torque. This is a logical evolutionary step that leverages the proven functionality of self-actuated fluid film compliant foil bearings and seals which operate in the hydrodynamic regime. Thus, as in these devices, the process of compression induced by shear flow is dominated by the balance between pressure and viscous forces which are in turn enhanced and controlled by tribological effects arising between the fluid film and the geometry of the counterface compliant surface. A model based on the compressible Reynolds equation coupled to the thin-plate theory formulation for compliant foil deflection is presented and parametrically solved to predict pressure, flow rate, and shear losses. The smooth disk and four-pad (sectored) compliant counterface effective size (7.6 mm < r < 14.1 mm), disk operating speed (50,000 to 360,000 rpm), nominal initial gap (0.03 mm < h0 < 0.635 mm), and overall operating conditions chosen for the parametric study correspond to those envisioned for eventual practical integration of miniaturized external combustion bladeless gas turbine engines and turbocompressors. Theoretical performance curves reporting flow versus pressure as well as compression power requirements versus speed were obtained. The predictions of the analysis are compared to results obtained experimentally on a proof of concept engine and presented in a companion paper. The simplicity of the bladeless geometry makes it amenable to deployment in multistage configurations, so that in conjunction with its foil bearing predecessors, this novel technology will result in low cost, ultra-high speed, high specific power and power density, high efficiency, oil-free and maintenance-free engines — attractive for many practical applications, ranging from military micro-UAV propulsion and portable power systems, to domestic combined heat and power turboalternators, and even micro-compressors for portable medical devices. As a point of reference, it is anticipated that a 10-stage bladeless compressor based on a compression stage as described herein would have a size comparable to that of a 355 mL soda can delivering a flow of 1 kg/min of compressed air.


Author(s):  
Saeedeh Saghlatoun ◽  
Weilin Zhuge ◽  
Yangjun Zhang

After more than twenty years working on the selection of an appropriate expander for Organic Rankine cycles and wide research and attentions about its influence on the performance and total cost of waste heat recovery systems, now there is a good-enough background studies and achievement for large scale applications. But small-scale industries is like a art space to modify and revise the previous results. As it is clearly known, in small-scale applications and industries especially in internal combustion engines, besides the investigation of performance, physical properties and final efficiency of expander, other parameters should be analyzed accurately like manufacturing cost, availability, reliability, sensitivity to operating condition fluctuations. Due to a significant role of expander equipment to enhance the efficiency of ORC system in the first step expanders is investigated. In this paper, as per related operating characteristics, a complete comparison of small-scale expanders will be debated to guide designers to select more appropriate and the best efficient expansion machine as per their requirements. According to available literatures there is more need to do research about different types of expanders with various operating conditions in small-scale industries.


Author(s):  
Krystof Kryniski

Abstract Due to their reliability and low maintenance costs over an extended service time, the journal bearings, also known as fluid-film bearings, are commonly incorporated in the super-critical rotor systems. Together with proven balancing methods, they allow rotating machine to pass smoothly through the various of critical speeds, both during start-ups and shut-downs. However, journal bearings need to be designed very carefully, as at some operating conditions (speed and load), they may introduce the undesired effects, such as unstable operations or sub-harmonic resonances. The standard procedure leading to the optimum fluid-film bearing design is based on the bearing capacity, defined by the Sommerfield number [1][2]. When Sommerfield number is determined, all design parameters, such as viscosity, radial clearance, diameter and rotation speed, etc. are matched to satisfy the engineering requirements specified. The procedure is considered to be completely reliable and is commonly used in turbo-machinery and high-speed compressor design. However, the significant divergences between theory and practice were observed with the increase of a bearing radial clearance [3].


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Xueqing Zhang ◽  
Qinghua Chen ◽  
Juanfang Liu

High-speed micro-gas journal bearing is one of the essential components of micro-gas turbines. As for the operating conditions of bearings, the high-speed, high-temperature, ultra-high temperature difference along the axial direction and the species of gaseous lubricants are extremely essential to be taken into account, and the effects of these factors are examined in this paper. The first-order modified Reynolds equation including the thermal creep, which results from the extremely large temperature gradient along the axial direction, is first derived and coupled with the simplified energy equation to investigate the steady hydrodynamic characteristics of the micro-gas bearings. Under the isothermal condition, it is found that CO2 can not only improve the stability of bearings but also generate a relatively higher load capacity by some comparisons. Thus, CO2 is chosen as the lubricant to further explore the influence of thermal creep. As the rotation speed and eccentricity ratio change, the thermal creep hardly has any effect on the gas film pressure. However, the shorter bearing length can augment the thermal creep. Compared with the cases without the thermal creep, the thermal creep could remarkably destroy the stability of gas bearing, but it might slightly enhance the load capacity.


Author(s):  
Radheesh Dhanasegaran ◽  
Antti Uusitalo ◽  
Teemu Turunen-Saaresti

Abstract In the present work, a dynamic model has been developed for the small-scale high-temperature ORC experimental test rig at the LUT University that utilizes waste heat from a heavy-duty diesel engine exhaust. The experimental facility consists of a high-speed Turbogenerator, heat exchanger components such as recuperator, condenser, and evaporator with a pre-feed pump to boost the working fluid pressure after the condensation process constituting a cycle. The turbogenerator consists of a supersonic radial-inflow turbine, a barske type main-feed pump, and a permanent magnet type generator components connected on a single shaft. Octamethyltrisiloxane (MDM) is the chosen organic working fluid in this cycle. Matlab-Simulink environment along with the open-source thermodynamic and transport database Cool-Prop has been chosen for calculating the thermodynamic properties of the dynamic model. A functional parameter approach has been followed for modeling each block component by predefined input and output parameters, aimed at modeling the performance characteristics with a limited number of inputs for both design and off-design operations of the cycle. The dynamic model is validated with the experimental data in addition to the investigation of exhaust gas mass flow regulation that establishes a control strategy for the dynamic model.


Author(s):  
Kévin Rosset ◽  
Olivier Pajot ◽  
Jurg Schiffmann

Abstract Waste heat recovery is expected to contribute to reducing CO2 emissions from trucks. Organic Rankine cycle (ORC) systems show the highest potential for this application, but still lack efficient small-scale expansion devices, in practice. A novel turbo-generator supported on gas-lubricated bearings is presented in this paper. The device combines a single-stage radial-inflow turbine and a permanent-magnet machine in a single rotating part supported on aerodynamic bearings, lubricated with the working fluid (R245fa). The oil-free expander was tested within a dedicated ORC test setup. It was driven up to its nominal speed of 100 kRPM, generated up to 2.3 kW of electrical power, and reached a peak overall efficiency of 67%. Although the prototype was not actively cooled, the mechanical losses of the rotor shaft and the iron loss of the electrical machine reached their nominal levels. Only the copper loss was at a part-load level. The electro-mechanical efficiency of the turbo-generator reached 91% and is expected to increase while testing the device at higher load. This proof of concept confirms the high-speed and low-loss potential of gas-lubricated bearings for small-scale dynamic expanders.


Sign in / Sign up

Export Citation Format

Share Document