Non-Linear Modeling and Parameter Identification of Semi-Active Engine Mounts With Air Spring

2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Rong Guo ◽  
Zi-wei Zhou

Abstract Car manufacturers have been motivated to apply semi-active engine mounts to ensure superior performance in vibration attenuation during idle condition and better ability to isolate vibration which is generated by engine unbalanced force at high frequencies. This paper develops a non-linear lumped parameter model of semi-active engine mounts with air spring that focuses on the non-linearity of the rubber diaphragm and the air chamber. Then, the main rubber dynamic stiffness parameters are identified through experimental approaches with a novel-designed test rig. Other parameters including effective pumping area, main rubber spring bulge stiffness, fluid channel inertia and resistance, rubber diaphragm, and air-chamber parameters are attained through finite element analysis (FEA). Supported by the identified lumped parameters, the non-linear mathematical model could be simulated. In addition, the dynamic characteristics of the semi-active engine mount are tested through the original test rig. Therefore, comparing with the tested dynamic characteristics, the simulation result can validate the developed model and thus facilitate the structure design of the semi-active engine mount.

Author(s):  
Rong Guo ◽  
Xiao-kang Wei ◽  
Sheng-qi Zhou ◽  
Jun Gao

An active engine mount (AEM) is an effective technology to improve a vehicle’s noise, vibration, and harshness performance. This paper mainly focuses on the combination experiment and finite element analysis (FEA) for parameter identification of AEMs. Notably, a novel test rig is designed to identify all specific parameters involved in the AEM. Firstly, the static and dynamic stiffness of the main rubber spring are calculated based on structure FEA method. The equivalent piston area and upper chamber volumetric stiffness are also estimated through fluid–structure interaction analysis. Inertia track parameters, involving inertia and linear and nonlinear resistance of the fluid, are identified by a simplified fluid model. These common hydraulic engine mount parameters are all experimentally validated through the original test rig. Besides, the particular components of the electromagnetic AEM, namely actuator parameters, are further estimated by experimental identification utilizing the experimental apparatus. The novel test bench, which exhibited high accuracy, good tightness, and strong versatility, not only simplifies the structure and process of identification plant for passive engine mount parameters, but accommodates the particular AEM ones. The combination method assimilates both the efficiency of FEA and the accuracy of experiment, facilitating the structure design and renovation of AEMs.


1999 ◽  
Vol 123 (2) ◽  
pp. 186-194 ◽  
Author(s):  
Yunhe Yu ◽  
Saravanan M. Peelamedu ◽  
Nagi G. Naganathan ◽  
Rao V. Dukkipati

This study divided into three portions to provide performance requirements; overview and development of various engine mounts; and the optimization of engine mount systems. The first part provides an insight about the ideal engine mount system that should isolate vibration caused by engine disturbance force in various speed range and prevent engine bounce from shock excitation. This implies that the dynamic stiffness and damping of the engine mount should be frequency and amplitude dependent. Therefore, the development of engine mounting systems has mostly concentrated on improvement of frequency and amplitude dependent properties. The second part starts discussion on the conventional elastomeric mounts that offer a trade-off between static deflection and vibration isolation. The next level, passive hydraulic mounts can provide a better performance than elastomeric mounts especially in the low frequency range. Subsequently, semi-active and active techniques are used to improve performance of hydraulic mounts by making them more tunable. The active engine mounting system can be very stiff at low frequency and be tuned to be very soft at the higher frequency range to isolate the vibration. The final part is about the optimization of engine mounting systems. An overview of the current work on this optimization shows some limitations. Further study is needed to consider the nonlinearities and variations in properties of different types of mounting systems.


Author(s):  
Y-W Lee ◽  
C-W Lee

Dynamic characteristics of a prototype active engine mount (AEM), designed on the basis of a hydraulic engine mount, have been investigated and an adaptive controller for the AEM has been designed. An equivalent mass-spring-damper AEM model is proposed, and the transfer function that describes the dynamic characteristics of the AEM is deduced from mathematical analysis of the model. The damping coefficient of the model is derived by considering the non-linear flow effect in the inertia track. Experiments confirmed that the model precisely describes the dynamic characteristics of the AEM. An adaptive controller using the filtered-X LMS algorithm is designed to cancel the force transmitted through the AEM. The stability of the LMS algorithm is guaranteed by using the secondary path transfer function derived on the basis of the dynamic model of the AEM. The performance test in the laboratory shows that the AEM system is capable of significantly reducing the force transmitted through the AEM.


Author(s):  
Reza Tikani ◽  
Nader Vahdati ◽  
Saeed Ziaei-Rad

Hydraulic engine mounts are generally applied to the aerospace and the automotive applications for the purpose of cabin noise and vibration reduction. By careful selection of hydraulic mount design parameters, at a certain frequency, namely the notch frequency, the dynamic stiffness will be smaller than the static stiffness and cabin vibration and noise reduction is provided at that frequency. Literature review indicates that in all previous hydraulic engine mount designs, the dynamic stiffness increases after the notch frequency. This phenomenon is not desirable because of the increase in transmitted force to the air-frame. Here in this paper, a new hydraulic engine mount design is proposed that uses two working fluids. This new design has two notch frequencies and two peak frequencies. In this study, effective reduction of the peak frequencies has been demonstrated by using a controllable fluid as one of the mount’s working fluids and a non-controllable fluid as the 2nd working fluid. As a result, one can obtain a hydraulic engine mount design with only one notch frequency but no peak frequency. The new hydraulic engine mount design and its mathematical model are presented in details and some discussions on the simulation results are also included.


Author(s):  
Franck Balducchi ◽  
Mihai Arghir ◽  
Romain Gauthier

The paper deals with the experimental analysis of the dynamic characteristics of a foil thrust bearing (FTB) designed following the specifications given by NASA in 2009. The start-up characteristics of the same foil bearing were investigated in a recently published paper. The test rig used for start-up measurements was adapted for dynamic measurements. The paper presents the test rig in detail as well as its identified dynamic models. Measurements of the dynamic characteristics of the bump foil structure were performed for static loads comprised between 30 N and 150 N while measurements for the FTB were performed at 35 krpm for 30 N, 60 N and 90 N. Excitation frequencies were comprised between 150 Hz and 750 Hz. Results showed that the dynamic stiffness of the FTB increase with excitation frequency while the equivalent damping decreases. Both stiffness and damping increase with the static load but are smaller at 35 krpm compared to 0 rpm.


2015 ◽  
Vol 752-753 ◽  
pp. 913-917
Author(s):  
Gong Yu Pan ◽  
Qian Qian Wang ◽  
Xin Yang

In order to improve the vibration isolation performance of engine mount, a new type of magneto-rheological semi-active mount with multiple inertia tracks is designed based on the existing magneto-rheological semi-active mount . The mechanical model is established according to the mount. The expression of the dynamic stiffness and damping lag angle is deduced, then the dynamic characteristics is simulated in the simulation software. At the same time, verify this model correct by the experiments.


Author(s):  
Nader Vahdati ◽  
Somayeh Heidari

Engine mounts need to satisfy three design requirements: (1) firmly support engine weight, (2) isolate structure from the engine’s noise and vibration, and (3) control engine motion when large shocks or engine resonances are present. In addition to these three criteria, which are common for designing all types of engine mounts (passive, semi-active, and active), two more design requirements need to be satisfied for active engine mounts. First, they should be designed such that if there is any malfunction with the actuator, the controller, or the sensors, the active engine mount should still safely operate as a passive mount. Second, the power consumption, the size and weight of the required actuator and its controller should be kept as low as possible. The current paper aims to present an active hydraulic (or fluid) engine mount design by using an electromagnetic actuator and capacitive circuit such that it is able to act as a passive mount, semi-active mount, and an active mount. In addition, the presented design has the capability to be converted to a damper as and when needed. The multi-functional capability of the proposed engine mount design (passive, semi-active, active, and damper) distinguishes the current design from the previously designed active engine mounting systems, and this multi-functional capability is explained in the paper. The proposed design consists of a conventional passive hydraulic (fluid) mount, an electromagnetic actuator (voice coil) and a capacitive circuit. The voice coil is placed in the lower chamber of the passive hydraulic mount and it can change the volumetric stiffness of the bottom chamber actively such that the engine mount has low dynamic stiffness in a wide range of frequencies. The capacitive circuit is paralleled with the voice coil and in situations when large shock inputs are present; it adds capacitance to the electromagnetic circuit and changes the characteristics of the mount from an isolator to a damper. Since the active engine mount design of this paper involves several energy domains, bond graph modeling technique is used for mathematical modeling. MATLAB simulation results are shown for an automotive application and the performance of the proposed active engine mount design is evaluated as an isolator and as a damper. Finally, an adaptive controller, based on Filtered-X LMS algorithm, is proposed and its performance is investigated. The proposed design can eliminate transmitted force from the engine to the structure in a frequency range of 15 Hz to 125 Hz.


2019 ◽  
Vol 25 (21-22) ◽  
pp. 2749-2757
Author(s):  
Yuan Li ◽  
Jason Zheng Jiang ◽  
Simon A Neild

This paper investigates the potential for improving the performance of hydraulic engine mounts through fluid passageway designs. In previous studies, a few simple inertia track designs have been investigated with moderate improvements obtained. However, there are countless alternative design possibilities existing; while analyzing each one of them in turn is impracticable. To this end, this paper introduces a systematic methodology to optimize fluid passageway designs in a hydraulic engine mount. First, beneficial fluid passageway configurations are systematically identified using a linearized low-frequency model that captures the relative displacement transmissibility. A nonlinear model is then used to fine-tune the fluid passageway designs for the low-frequency transmissibility improvement, and also for the assessment of high-frequency dynamic stiffness performance. The obtained beneficial designs present performance advantages over a wide frequency range. The design approach introduced in this study is directly applicable to other engine mount models and performance criteria.


2013 ◽  
Vol 710 ◽  
pp. 277-280
Author(s):  
Wen Ku Shi ◽  
Wei Yang ◽  
Suo Jun Hou ◽  
Guo Yu Feng

Structural characteristics and working principle of hydraulic engine mount with air spring was described, and mathematical model was derived. As significant influence factors of dynamic characteristics of hydraulic engine mount, stiffness and damping of rubber main spring, bulk stiffness of the upper chamber and effective pump area of the main rubber and some other key parameters were obtained in experiments. Mathematical model of hydraulic mount was simulated to analyze the influence of specific parameter on dynamic characteristics of mount.


Author(s):  
Tae Ho Kim ◽  
Moon Sung Park ◽  
Jongsung Lee ◽  
Young Min Kim ◽  
Kyoung-Ku Ha ◽  
...  

Gas foil bearings (GFBs) have clear advantages over oil-lubricated and rolling element bearings, by virtue of low power loss, oil-free operation in compact units, and rotordynamic stability at high speeds. However, because of the inherent low gas viscosity, GFBs have lower load capacity than the other bearings. In particular, accurate measurement of load capacity and dynamic characteristics of gas foil thrust bearings (GFTBs) is utmost important to widening their applications to high performance turbomachinery. In this study, a series of excitation tests were performed on a small oil-free turbomachinery with base excitations in the rotor axial direction to measure the dynamic load characteristics of a pair of six-pad, bump-type GFTBs, which support the thrust collar. An electromagnetic shaker provided dynamic sine sweep loads to the test bench (shaking table), which held rigidly the turbomachinery test rig for increasing excitation frequency from 10 Hz to 200 Hz. The magnitude of the shaker dynamic load, represented as an acceleration measured on the test rig, was increased up to 9 G (gravity). An eddy current sensor installed on the test rig housing measured the axial displacement (or vibrational amplitude) of the rotor thrust collar during the excitation tests. The axial acceleration of the rotor relative to the test rig was calculated using the measured displacement. A single degree-of-freedom base excitation model identified the frequency-dependent dynamic load capacity, stiffness, damping, and loss factor of the test GFTB for increasing shaker dynamic loads and increasing bearing clearances. The test results show that, for a constant shaker force and the test GFTB with a clearance of 155 μm, an increasing excitation frequency increases the dynamic load carried by the test GFTB, i.e., bearing reaction force, until a certain value of the frequency where it jumps down suddenly because of the influence from Duffing’s vibrations of the rotor. The bearing stiffness increases and the damping decreases dramatically as the excitation frequency increases. Generally, the bearing loss factor ranges from 0.5 to 1.5 independent of the frequency. As the shaker force increases, the bearing dynamic load, stiffness, damping, and loss factor increase depending on the excitation frequency. Interestingly, the agreements between the measured GFTB dynamic load versus the thrust runner displacement, the measured GFTB static load versus the structural deflection, and the predicted static load versus the thrust runner displacement are remarkable. Further tests with increasing GFTB clearances of 155, 180, 205, and 225 μm revealed that the vibrational amplitude increases and the jump-down frequency decreases with increasing clearances. The bearing load increases, but the bearing stiffness, damping, and loss factor decrease slightly as the clearance increases. The test results after a modification of the GFTB by rotating one side bearing plate by 30° relative to the other side bearing plate revealed insignificant changes in the dynamic characteristics. The present dynamic performance measurements provide a useful database of GFTBs for use in microturbomachinery.


Sign in / Sign up

Export Citation Format

Share Document