Solar Desalination Based on Micro Gas Turbines Driven by Parabolic Dish Collectors

2020 ◽  
Vol 142 (3) ◽  
Author(s):  
David Sánchez ◽  
Miguel Rollán ◽  
Lourdes García-Rodríguez ◽  
Gonzalo S. Martínez

Abstract This paper presents the preliminary design and techno-economic assessment of an innovative solar system for the simultaneous production of water and electricity at small scale, based on the combination of a solar micro gas turbine (mGT) and a bottoming desalination unit. To assess this system, a design model is developed to select the main design parameters for two different desalination technologies, reverse osmosis (RO), and multi-effect distillation (MED), aiming to exploit the available electricity and waste heat from the turbine, respectively. The results show that, from a thermodynamic standpoint, it is possible to exceed 65% solar energy utilization if both electricity and waste heat are used to produce fresh water. Nevertheless, the better thermodynamic performance of the fully integrated system does not translate into a more economical production of water. Indeed, the cost of water turns out lower when coupling the solar microturbine and reverse osmosis units only (between 3 and 3.5 €/m3), while making further use of the available waste heat in a multi-effect distillation system rises the cost of water by 15%.

Author(s):  
David Sánchez ◽  
Miguel Rollán ◽  
Lourdes García-Rodríguez ◽  
G. S. Martínez

Abstract This paper presents the preliminary design and techno-economic assessment of an innovative solar system for the simultaneous production of water and electricity at small scale, based on the combination of a solar micro gas turbine and a bottoming desalination unit. The proposed layout is such that the former system converts solar energy into electricity and rejects heat that can be used to drive a thermal desalination plant. A design model is developed in order to select the main design parameters for two different desalination technologies, phase change and membrane desalination, in order to better exploit the available electricity and waste heat from the turbine. In addition to the usual design parameters of the mGT, the impact of the size of the collector is also assessed and, for the desalination technologies, a tailored multi-effect distillation unit is analysed through the selection of the corresponding design parameters. A reverse osmosis desalination system is also designed in parallel, based on commercial software currently used by the water industry. The results show that the electricity produced by the solar micro gas turbine can be used to drive a Reverse Osmosis system effectively whereas the exhaust gases could drive a distillation unit. This would decrease the stack temperature of the plant, increasing the overall energy efficiency of the system. Nevertheless, the better thermodynamic performance of this fully integrated system does not translate into a more economical production of water. Indeed, the cost of water turns out lower when coupling the solar microturbine and Reverse Osmosis units only (between 3 and 3.5 €/m3), whilst making further use the available waste heat in a Multi Effect Distillation system rises the cost of water by 15%.


2021 ◽  
Vol 2 ◽  
Author(s):  
Hans Böhm ◽  
Markus Lehner ◽  
Thomas Kienberger

Energy-intensive industries still produce high amounts of non-renewable CO2 emissions. These emissions cannot easily be fully omitted in the short- and mid-term by electrification or switching to renewable energy carriers, as they either are of inevitable origin (e.g., mineral carbon in cement production) or require a long-term transition of well-established process chains (e.g., metal ore reduction). Therefore, carbon capture and utilization (CCU) has been widely discussed as an option to reduce net CO2 emissions. In this context, the production of synthetic natural gas (SNG) through power-to-methane (PtM) process is expected to possess considerable value in future energy systems. Considering current low-temperature electrolysis technologies that exhibit electric efficiencies of 60–70%el, LHV and methanation with a caloric efficiency of 82.5%LHV, the conventional PtM route is inefficient. However, overall efficiencies of >80%el, LHV could be achieved using co-electrolysis of steam and CO2 in combination with thermal integration of waste heat from methanation. The present study investigates the techno-economic performance of such a thermally integrated system in the context of different application scenarios that allow for the establishment of a closed carbon cycle. Considering potential technological learning and scaling effects, the assessments reveal that compared to that of decoupled low-temperature systems, SNG generation cost of <10 c€/kWh could be achieved. Additional benefits arise from the direct utilization of by-products oxygen in the investigated processes. With the ability to integrate renewable electricity sources such as wind or solar power in addition to grid supply, the system can also provide grid balancing services while minimizing operational costs. Therefore, the implementation of highly-efficient power-to-gas systems for CCU applications is identified as a valuable option to reduce net carbon emissions for hard-to-abate sectors. However, for mid-term economic viability over fossils intensifying of regulatory measures (e.g., CO2 prices) and the intense use of synergies is considered mandatory.


2021 ◽  
Vol 13 (20) ◽  
pp. 11295
Author(s):  
Ali Babaeebazaz ◽  
Shiva Gorjian ◽  
Majid Amidpour

In this study, a small-scale two-stage multi-stage flash (MSF) desalination unit equipped with a vacuum pump and a solar parabolic collector (PDC) with a conical cavity receiver were integrated. To eliminate the need for heat exchangers, a water circulation circuit was designed in a way that the saline feedwater could directly flow through the receiver of the PDC. The system’s performance was examined during six days in July 2020, from 10:00 a.m. to 3:00 p.m., under two distinct scenarios of the MSF desalination operation under the vacuum (−10 kPa) and atmospheric pressure by considering three saline feedwater water flow rates of 0.7, 1 and 1.3 L/min. Furthermore, the performance of the solar PDC-MSF desalination plant was evaluated by conducting energy and exergy analyses. The results indicated that the intensity of solar radiation, which directly affects the top brine temperature (TBT), and the values of the saline feedwater flow rate have the most impact on productivity. The maximum productivity of 3.22 L per 5 h in a day was obtained when the temperature and saline feedwater flow rate were 94.25 °C (at the maximum solar radiation of 1015.3 W/m2) and 0.7 L/min, respectively, and the MSF was under vacuum pressure. Additionally, it was found that increasing the feedwater flow rate from 0.7 to 1.3 L/min reduces distillate production by 76.4% while applying the vacuum improves the productivity by about 34% at feedwater flow rate of 0.7 L/min. The exergy efficiency of the MSF unit was obtained as 0.07% with the highest share of exergy destruction in stages. The quality parameters of the produced distillate including pH, TDS, EC and DO were measured, ensuring they lie within the standard range for drinking water. Moreover, the cost of freshwater produced by the MSF plant varied from 37 US$/m3 to 1.5 US$/m3 when the treatment capacity increased to 8000 L/day.


Author(s):  
Fabrizio Reale ◽  
Vincenzo Iannotta ◽  
Raffaele Tuccillo

The primary need of reducing pollutant and greenhouse gas emissions has led to new energy scenarios. The interest of research community is mainly focused on the development of energy systems based on renewable resources and energy storage systems and smart energy grids. In the latter case small scale energy systems can become of interest as nodes of distributed energy systems. In this context micro gas turbines (MGT) can play a key role thanks to their flexibility and a strategy to increase their overall efficiency is to integrate gas turbines with a bottoming cycle. In this paper the authors analyze the possibility to integrate a MGT with a super critical CO2 Brayton cycle turbine (sCO2 GT) as a bottoming cycle (BC). A 0D thermodynamic analysis is used to highlight opportunities and critical aspects also by a comparison with another integrated energy system in which the waste heat recovery (WHR) is obtained by the adoption of an organic Rankine cycle (ORC). While ORC is widely used in case of middle and low temperature of the heat source, s-CO2 BC is a new method in this field of application. One of the aim of the analysis is to verify if this choice can be comparable with ORC for this operative range, with a medium-low value of exhaust gases and very small power values. The studied MGT is a Turbec T100P.


Author(s):  
Tina Unglaube ◽  
Hsiao-Wei D. Chiang

In recent years closed loop supercritical carbon dioxide Brayton cycles have drawn the attention of many researchers as they are characterized by a higher theoretic efficiency and smaller turbomachinery size compared to the conventional steam Rankine cycle for power generation. Currently, first prototypes of this emerging technology are under development and thus small scale sCO2 turbomachinery needs to be developed. However, the design of sCO2 turbines faces several new challenges, such as the very high rotational speed and the high power density. Thus, the eligibility of well-established radial inflow gas turbine design principles has to be reviewed regarding their suitability for sCO2 turbines. Therefore, this work reviews different suggestion for optimum velocity ratios for gas turbines and aims to re-establish it for sCO2 turbines. A mean line design procedure is developed to obtain the geometric dimensions for small scale sCO2 radial inflow turbines. By varying the specific speed and the velocity ratio, different turbine configurations are set up. They are compared numerically by means of CFD analysis to conclude on optimum design parameters with regard to maximum total-to-static efficiency. Six sets of simulations with different specific speeds between 0.15 and 0.52 are set up. Higher specific speeds could not be analyzed, as they require very high rotational speeds (more than 140k RPM) for small scale sCO2 turbines (up to 150kWe). For each set of simulations, the velocity ratio that effectuates maximum efficiency is identified and compared to the optimum parameters recommended for radial inflow turbines using subcritical air as the working fluid. It is found that the values for optimum velocity ratios suggested by Rohlik (1968) are rather far away from the optimum values indicated by the conducted simulations. However, the optimum values suggested by Aungier (2005), although also established for subcritical gas turbines, show an approximate agreement with the simulation results for sCO2 turbines. Though, this agreement should be studied for a wider range of specific speeds and a finer resolution of velocity ratios. Furthermore, for high specific speeds in combination with high velocity ratios, the pressure drop of the designed turbines is too high, so that the outlet pressure is beyond the critical point. For low specific speeds in combination with low velocity ratios, the power output of the designed turbines becomes very small. Geometrically, turbines with low specific speeds and high velocity ratios are characterized by very small blade heights, turbines with high specific speeds and small velocity ratios by very small diameters.


Author(s):  
Iurii Antipin

Relevance. Developing inclined ore bodies of low and uneven thickness using mining systems with caving results in great losses and dilution, deteriorating the conditions for ore gravitation. As a consequence, it becomes necessary to slice the barren rock in the lying side to form slopes with the desired angle. There are also characteristic ore losses at the dead end of the drawing drift independent of the ore body thickness, therefore acquiring a significant role under a lesser thickness. The height of the sublevels, limited by the ore body’s inclination, leads to a considerable amount of preparatory and development operations. The absence of actual in-process monitoring of useful component content in the ore drawing doses often leads to increased dilution rates due to the drawing of barren caved rocks of the previously worked overlying sublevel. Thus, the technological solutions search and their design parameters substantiation for the conditions of inclined ore bodies of low thickness is an urgent scientific and technical problem. Research aim is to substantiate the parameters of the open stoping mining which provides for leaving unrecoverable pillars which ensure the drawing of the maximum volume of pure ore under the cantilever of the hanging side rocks. Research methods. The work used a comprehensive research method based on search and design of technically rational options for geotechnology, their technical and economic assessment and mathematical modeling, and determination of stable parameters of mining system structural elements – the chamber span and the pillar width. Results analysis. The optimal variant of the open stoping mining system has been determined. In comparison with the basic technology of sublevel caving, the specific consumption of preparatory and development operations per 1000 tons of mined ore has been reduced by 34%, the cost of mined ore – by 12%, and ore losses and dilution – by 2 and 2.9 times, respectively. The stable parameters of the chamber span and pillar width have been established. Conclusions. The developed technology of sublevel open stoping with double chambers with frontal ore drawing using remote-controlled loading and hauling machines and subsequent caving of unrecoverable pillars of minimum width allows to significantly increase the efficiency of mining.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 92
Author(s):  
Alessio Ciambellotti ◽  
Gianluca Pasini ◽  
Andrea Baccioli ◽  
Lorenzo Ferrari ◽  
Stefano Barsali

Biomethane liquefaction may help decarbonization in heavy transportation and other hard-to-abate sectors. Small-scale liquefaction plants (<10 ton/day) are suitable for small biogas plants located near farms and other agricultural activities. “Internal refrigerant” refrigeration cycles (e.g., Kapitza cycle) are often proposed for small-scale natural gas liquefaction due to their simplicity. An optimized Kapitza-based cycle is modeled and simulated, and then several modifications were studied to evaluate their influence on the energetic and economic performances. Results showed a specific consumption ranging between 0.65 kWh/kg and 0.54 kWh/kg of bio-LNG with no significant improvements by increasing cycle complexity. Instead, a reduction of 17% was achieved with the implementation of absorption chillers, that effectively turn waste heat into useful cooling energy. An economic assessment was finally carried showing that the Levelized Cost of Liquefation is more affected by electricity cost than additional CapEx.


2021 ◽  
Vol 238 ◽  
pp. 10008
Author(s):  
Kirill Abrosimov ◽  
Federica Sciacchitano ◽  
Gianluca Pasini ◽  
Andrea Baccioli ◽  
Aldo Bischi ◽  
...  

Aiming for the better environmental and economic performance of traditional engines, waste heat recovery (WHR) technologies are actively studied to find their most beneficial applications. In this work, the inverted Brayton cycle (IBC) is investigated as a potential WHR solution for liquefied natural gas (LNG) fuelled transport truck. LNG being one of the less polluting fossil fuels is widely spreading nowadays in different industries due to the rapid development of the LNG supply chain in the world. LNG-fuelled cargo transportation follows this prevailing trend. Based on the overexpansion of flue gases to subatmospheric pressure, inverted Brayton cycle, in turn, is considered a prospective technology of WHR and techno-economic analysis of IBC in several configurations on-board of a heavy transport truck have been assessed. IBC is integrated into the engine cooling system in the basic layout, and additionally, it incorporates LNG regasification process in advanced configurations. Power balance based on Aspen Hysys model enables to perform system optimisation and gives preliminary design parameters of the system components. Cost function approach provides the basis for a preliminary economic assessment of the layouts. Although the system shows fuel economy of maximum about 2.1 %, analysis revealed the necessity to continue the search for better technical solutions in IBC-based systems to make them economically attractive due to high cost of installed equipment.


2011 ◽  
pp. 217-223 ◽  
Author(s):  
Karina Ribeiro Salomon ◽  
Electo Eduardo Silva Lora ◽  
Mateus Henrique Rocha ◽  
Oscar Almazán del Olmo

The anaerobic biodigestion is as an alternative treatment for vinasse that preserve and even increase its fertilization potential (phosphorus, potassium and nitrogen content), dramatic reducing the BOD, making safer the use of treated vinasse for field fertirrigation. The process also yield methane, a very convenient and eco-friendly fuel gas, so the paper deals with a methodology for the calculation of the cost of the biogas, considering also the benefits of the fertirrigation using the liquid effluents from the digester, as well as the solids residues, very rich in organic matter. An analysis of the economical feasibility of the use of the biogas, obtained from the vinasse anaerobic digestion, as fuel, is also carried out. Different scenarios are evaluated, like: electric power generation through Reciprocating Combustion Engines (RCE), gas turbines and microturbines (MT), the cofiring of the biogas and bagasse in the mill’s boilers, the sale of the substituted bagasse, its utilization for electric power generation and the use of the biogas, as fuel, in spray drying of thermal sensible bioproducts (yeasts) to be commercialized. The possibility of selling the certificates of avoided greenhouse gasses emissions (carbon credits) due to the use of the biogas in substitution to fossil fuels, is also considered.


Processes ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 216 ◽  
Author(s):  
Moksadur Rahman ◽  
Valentina Zaccaria ◽  
Xin Zhao ◽  
Konstantinos Kyprianidis

The market for the small-scale micro gas turbine is expected to grow rapidly in the coming years. Especially, utilization of commercial off-the-shelf components is rapidly reducing the cost of ownership and maintenance, which is paving the way for vast adoption of such units. However, to meet the high-reliability requirements of power generators, there is an acute need of a real-time monitoring system that will be able to detect faults and performance degradation, and thus allow preventive maintenance of these units to decrease downtime. In this paper, a micro gas turbine based combined heat and power system is modelled and used for development of physics-based diagnostic approaches. Different diagnostic schemes for performance monitoring of micro gas turbines are investigated.


Sign in / Sign up

Export Citation Format

Share Document