On the Characterization of Nonlinearities in Assembled Structures

2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Scott A. Smith ◽  
Matthew R. W. Brake ◽  
Christoph W. Schwingshackl

Abstract This work refines a recently formalized methodology proposed by D.J. Ewins consisting of ten steps for model validation of nonlinear structures. This work details, through a series of experimental studies, that many standard test setup assumptions that are made when performing dynamic testing are invalid and need to be evaluated for each structure. The invalidation of the standard assumptions is due to the presence of nonlinearities, both known and unrecognized in the system. Complicating measurements, many nonlinearities are currently characterized as constant properties instead of variables that exhibit dependency on system hysteresis and actuation amplitude. This study reviews current methods for characterizing nonlinearities and outlines gaps in the approaches. A brief update to the CONCERTO method, based on the accelerance of a system, is derived for characterizing a system’s nonlinearities. Finally, this study ends with an updated methodology for model validation and the ramifications for modeling assemblies with nonlinearities are discussed.

2021 ◽  
Vol 44 (3) ◽  
Author(s):  
T KALAIARASI ◽  
M SENTHILKUMAR ◽  
S SHANMUGAN ◽  
T JARIN ◽  
V CHITHAMBARAM ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 473
Author(s):  
Dilyana Gospodonova ◽  
Iliana Ivanova ◽  
Todorka Vladkova

The aim of this study was to prepare TiO2/Ag/Cu magnetron co-sputtered coatings with controlled characteristics and to correlate them with the antimicrobial activity of the coated glass samples. The elemental composition and distribution, surface morphology, wettability, surface energy and its component were estimated as the surface characteristics influencing the bioadhesion. Well expressed, specific, Ag/Cu concentration-dependent antimicrobial activity in vitro was demonstrated toward Gram-negative and Gram-positive standard test bacterial strains both by diffusion 21 assay and by Most Probable Number of surviving cells. Direct contact and eluted silver/coper nanoparticles killing were experimentally demonstrated as a mode of the antimicrobial action of the studied TiO2/Ag/Cu thin composite coatings. It is expected that they would ensure a broad spectrum bactericidal activity during the indwelling of the coated medical devices and for at least 12 h after that, with the supposition that the benefits will be over a longer time.


CivilEng ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 14-34
Author(s):  
Konstantinos Tsiotsias ◽  
Stavroula J. Pantazopoulou

Experimental procedures used for the study of reinforcement to concrete bond have been hampered for a long time by inconsistencies and large differences in the obtained behavior, such as bond strength and mode of failure, depending on the specimen form and setup used in the test. Bond is controlled by the mechanics of the interface between reinforcement and concrete, and is sensitive to the influences of extraneous factors, several of which underlie, but are not accounted for, in conventional pullout test setups. To understand and illustrate the importance of specimen form and testing arrangement, a series of computational simulations are used in the present work on eight distinct variants of conventional bar pullout test setups that are used routinely in experimental literature for the characterization of bond-slip laws. The resulting bond strength increase generated by unaccounted confining stress fields that arise around the bar because of the boundary conditions of the test setup is used to classify the tests with respect to their relevance with the intended use of the results. Of the pullout setups examined, the direct tension pullout test produced the most conservative bond strength results, completely eliminating the contributions from eccentricity and passive confinement.


2013 ◽  
Vol 135 (9) ◽  
Author(s):  
Songjing Li ◽  
Jixiao Liu ◽  
Dan Jiang

Unexpected gas bubbles in microfluidic devices always bring the problems of clogging, performance deterioration, and even device functional failure. For this reason, the aim of this paper is to study the characterization variation of a valveless micropump under different existence conditions of gas bubbles based on a theoretical modeling, numerical simulation, and experiment. In the theoretical model, we couple the vibration of piezoelectric diaphragm, the pressure drop of the nozzle/diffuser and the compressibility of working liquid when gas bubbles are entrapped. To validate the theoretical model, numerical simulation and experimental studies are carried out to investigate the variation of the pump chamber pressure influenced by the gas bubbles. Based on the numerical simulation and the experimental data, the outlet flow rates of the micropump with different size of trapped gas bubbles are calculated and compared, which suggests the influence of the gas bubbles on the dynamic characterization of the valveless micropump.


2017 ◽  
Vol 105 (11) ◽  
Author(s):  
Thierry Wiss ◽  
Vincenzo V. Rondinella ◽  
Rudy J. M. Konings ◽  
Dragos Staicu ◽  
Dimitrios Papaioannou ◽  
...  

AbstractThe formation of the high burnup structure (HBS) is possibly the most significant example of the restructuring processes affecting commercial nuclear fuel in-pile. The HBS forms at the relatively cold outer rim of the fuel pellet, where the local burnup is 2–3 times higher than the average pellet burnup, under the combined effects of irradiation and thermo-mechanical conditions determined by the power regime and the fuel rod configuration. The main features of the transformation are the subdivision of the original fuel grains into new sub-micron grains, the relocation of the fission gas into newly formed intergranular pores, and the absence of large concentrations of extended defects in the fuel matrix inside the subdivided grains. The characterization of the newly formed structure and its impact on thermo-physical or mechanical properties is a key requirement to ensure that high burnup fuel operates within the safety margins. This paper presents a synthesis of the main findings from extensive studies performed at JRC-Karlsruhe during the last 25 years to determine properties and behaviour of the HBS. In particular, microstructural features, thermal transport, fission gas behaviour, and thermo-mechanical properties of the HBS will be discussed. The main conclusion of the experimental studies is that the HBS does not compromise the safety of nuclear fuel during normal operations.


Author(s):  
D.J. Varacalle ◽  
K.W. Couch ◽  
V.S. Budinger

Abstract Experimental studies of the subsonic combustion process have been conducted in order to determine the quality and economics of polyester, epoxy, urethane, and hybrid polyester-epoxy coatings. Thermally sprayed polymer coatings are of interest to several industries for anti-corrosion applications, including the infrastructural, chemical, automotive, and aircraft industries. Classical experiments were conducted, from which a substantial range of thermal processing conditions and their effect on the resultant coating were obtained. The coatings were characterized and evaluated by a number of techniques, including Knoop microhardness tests, optical metallography, image analysis, and bond strength. Characterization of the coatings yielded thickness, bond strength, hardness, and porosity.


2008 ◽  
Vol 136 ◽  
pp. 83-92 ◽  
Author(s):  
M.V. Hosur ◽  
Jessie B. Mayo Jr. ◽  
E. Wetzel ◽  
S. Jeelani

Kevlar has demonstrated the ability to protect well against ballistic threats but has low resistance to puncture. Correctional Kevlar has shown good resistance to puncture. However, the fabric is expensive, difficult to manufacture because of its tight weave construction, and has limited protection against ballistic threats. In an effort to produce materials that are less bulky, more flexible, and resistant to puncture, thermoplastic-Kevlar (TP-Kevlar) composites have been examined. Kevlar fabric was impregnated with thermoplastic film using a hot press to produce the composites. Static and dynamic puncture resistant properties of the TP-Kevlar composites were investigated using a National Institute of Justice (NIJ Standard 0115.00) Stab Tower. The TP-films used in this study were polyethylene, Surlyn, and co extruded-Surlyn, which is a co extrusion of Surlyn and polyethylene. Response of the polyethylene (PE)-Kevlar composites, Surlyn-Kevlar composites, and co extruded (COEX)-Kevlar composites to spike and knife threats under static and dynamic conditions were compared with that of neat Kevlar. The infusion of thermoplastic films into the Kevlar fabric was shown to dramatically increase puncture resistance during quasi-static and dynamic testing with spikes. The TP-film type also made a difference when examining the resistance on a comparative basis of the TP-Kevlar targets. The TP-Kevlar composite targets showed more resistance to quasi-static spike testing than quasi-static knife testing. Weapon comparisons revealed that the TP-Kevlar composite targets had more resistance to dynamic knife testing than dynamic spike testing.


Sign in / Sign up

Export Citation Format

Share Document