Bionic Flapping Mechanism of the Wings of a Cursorial Dinosaur Robot for Estimating Its Lift and Thrust

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Hong-Wei Song ◽  
Yaser Saffar Talori ◽  
Jing-Shan Zhao

Abstract We estimated the lift and thrust of the proto-wings of the dinosaur Caudipteryx, a close relative of birds, using both theoretical and experimental approaches. Our experiments utilized a newly reconstructed flapping wing mechanism in accordance to the fossil specimens of Caudipteryx. To ensure that this reconstructed mechanism could adequately simulate the realistic flapping movements, we investigated the relationships among the flapping angle, twisting angle, and stretching angle of the wing mechanism that was driven by a DC motor. We also used two sensors to measure the lift and thrust forces generated by the flapping movements of the reconstructed wing. Our experiment indicated that both the lift and thrust forces produced by the wings were small but increased at higher flapping frequencies. This study not only contributes to current understanding of the origin of avian flight but also usefully informs the ongoing development of bionic flapping robots.

2021 ◽  
Vol 11 (4) ◽  
pp. 1515
Author(s):  
Seung-Yong Bae ◽  
Je-Sung Koh ◽  
Gwang-Pil Jung

In this paper, we suggest a novel transmission for the DC motor-based flapping-wing micro aerial vehicles (FWMAVs). Most DC motor-based FWMAVs employ linkage structures, such as a crank-rocker or a crank-slider, which are designed to transmit the motor’s rotating motion to the wing’s flapping motion. These transmitting linkages have shown successful performance; however, they entail the possibility of mechanical wear originating from the friction between relative moving components and require an onerous assembly process owing to several tiny components. To reduce the assembly process and wear problems, we present a geometrically constrained and origami-based spherical six-bar linkage. The origami-based fabrication method reduces the number of the relative moving components by replacing rigid links and pin joints with facets and folding joints, which shortens the assembly process and reduces friction between components. The constrained spherical six-bar linkage enables us to change the motor’s rotating motion to the linear reciprocating motion. Due to the property that every axis passes through a single central point, the motor’s rotating motion is filtered at the spherical linkage and does not transfer to the flapping wing. Only linear motion, therefore, is passed to the flapping wing. To show the feasibility of the idea, a prototype is fabricated and analyzed by measuring the flapping angle, the wing rotation angle and the thrust.


2017 ◽  
Vol 10 (1) ◽  
pp. 70-84 ◽  
Author(s):  
Wenqing Yang ◽  
Liguang Wang ◽  
Bifeng Song

This paper describes the design and development of the Dove, a flapping-wing micro air vehicle (FWMAV), which was developed in Northwestern Polytechnical University. FWMAVs have attracted international attentions since the past two decades. Since some achievements have been obtained, such as the capability of supporting an air vehicle to fly, our research goal was to design an FWMAV that has the ability to accomplish a task. Main investigations were presented in this paper, including the flexible wing design, the flapping mechanism design, and the on-board avionics development. The current Dove has a mass of 220 g, a wingspan of 50 cm, and the ability of operating fully autonomously, flying lasts half an hour, and transmitting live stabilized color video to a ground station over 4 km away.


2020 ◽  
Vol 71 (5) ◽  
pp. 1681-1693 ◽  
Author(s):  
Michaela S Matthes ◽  
Janlo M Robil ◽  
Paula McSteen

Abstract Deficiency of the essential nutrient boron (B) in the soil is one of the most widespread micronutrient deficiencies worldwide, leading to developmental defects in root and shoot tissues of plants, and severe yield reductions in many crops. Despite this agricultural importance, the underlying mechanisms of how B shapes plant developmental and morphological processes are still not unequivocally understood in detail. This review evaluates experimental approaches that address our current understanding of how B influences plant morphological processes by focusing on developmental defects observed under B deficiency. We assess what is known about mechanisms that control B homeostasis and specifically highlight: (i) limitations in the methodology that is used to induce B deficiency; (ii) differences between mutant phenotypes and normal plants grown under B deficiency; and (iii) recent research on analyzing interactions between B and phytohormones. Our analysis highlights the need for standardized methodology to evaluate the roles of B in the cell wall versus other parts of the cell.


2013 ◽  
Vol 437 ◽  
pp. 366-372
Author(s):  
Xiao Zhou Fan ◽  
Zhi Lin Zhang ◽  
Liang Chen

Folding motion is important for a flight creature using flapping wing mode, but it seldom used for flapping-wing robot. In this paper, we propose a new foldable flapping wing mechanism, which consists of spatial crank-rocker mechanism, parallelogram mechanism, and cam mechanism. We establish the kinematical models, calculate the optimal parameters, and set up the virtual prototype using 3D software. The tracks of wingtip and the comparison between foldable and unfoldable flap wing show that folding motion can improve lift force obviously.


Author(s):  
Matt McDonald ◽  
Sunil K. Agrawal

Design of flapping-wing micro air-vehicles presents many engineering challenges. As observed by biologists, insects and birds exhibit complex three-dimensional wing motions. It is believed that these unique patterns of wing motion create favorable aerodynamic forces that enable these species to fly forward, hover, and execute complex motions. From the perspective of micro air-vehicle applications, extremely lightweight designs that accomplish these motions of the wing, using just a single, or a few actuators, are preferable. This paper presents a method to design a spherical four-bar flapping mechanism that approximates a given spatial flapping motion of a wing, considered to have favorable aerodynamics. A spherical flapping mechanism was then constructed and its aerodynamic performance was compared to the original spatially moving wing using an instrumented robotic flapper with force sensors.


2013 ◽  
Vol 6 (1) ◽  
Author(s):  
Richard J. Lock ◽  
Ravi Vaidyanathan ◽  
Stuart C. Burgess

This paper describes the design, fabrication, experimental testing and performance optimization of the morphology of a flapping wing for use on a robot capable of aerial and aquatic modes of locomotion. The focus of the optimization studies is that of wing design for aquatic propulsion. Inspiration for the research stems from numerous avian species which use a flapping wing for the dual purpose of locomotion (propulsion) in both air and water. The main aim of this research is to determine optimal kinematic parameters for marine locomotion that maximize nondimensionalized performance measures (e.g., propulsive efficiency), derived from analysis of avian wing morphing mechanisms that balance competing demands of both aerial and aquatic movement. Optimization of the kinematic parameters enables the direct comparison between outstretched (aerial) and retracted (aquatic) wing morphologies and permits trade-off studies in the design space for future robotic vehicles. Static foils representing the wing in both an extended and retracted orientation have been manufactured and subsequently subjected to testing over a range of kinematics. Details of the purpose built 2 degree-of-freedom (dof) flapping mechanism are presented. The gathered results enable validation of previously developed numerical models as well as quantifying achievable performance measures. This research focuses on the mechanical propulsive efficiencies and thrust coefficients as key performance measures whilst simultaneously considering the required mechanical input torques and the associated thrust produced.


Sign in / Sign up

Export Citation Format

Share Document