Can Titanium and Copper Oxide Commercial Nanoparticles Be Used for HP/HT Applications? A Comparison With the Very Well Performing Fe3O4 NP

Author(s):  
Zisis Vryzas ◽  
Vassilios C. Kelessidis ◽  
Lori Nalbandian ◽  
Vassilios Zaspalis

Smart drilling fluids, which can change their properties according to the flow environment, must be carefully designed so that they can handle the difficult challenges of HP/HT drilling successfully. Due to their unique physico-chemical properties, nanoparticles (NP) are considered as very good candidates for the formulation of these smart drilling fluids. This study presents filtration and rheological results of newly developed high-performance water-based drilling fluid systems containing different nanoparticles, commercial (C) titanium oxide (TiO2) and commercial (C) copper oxide (CuO) NP and compares them with results from using custom-made (CM) iron oxide (Fe3O4) NP and commercial (C) iron oxide (Fe3O4) NP, previously reported. Novel nano-based drilling fluids were made of de-ionized water, 7 wt% commercial Na-bentonite (base fluid), and NP were added at 0.5 wt%. The rheological properties of the produced suspensions were measured at temperatures up to 60°C and at atmospheric pressure with a Couette-type viscometer. Filtration characteristics were determined at elevated pressures and temperatures in a HP/HT filter press (500 psi/176°C) using ceramic discs as filter media, of permeability, k = 775 mD. The results of this study showed that the samples containing 0.5 wt% C TiO2 caused a reduction in the fluid loss by 23%, while C CuO NP resulted in 16% reduction, when compared to that of the base fluid, at these HPHT conditions. This should be compared to the 47% and 34% reduction in fluid loss of 0.5% CM Fe3O4 NP and of 0.5% of C Fe3O4 NP, reported previously. Analysis of rheological data revealed shear-thinning behavior for all the tested novel drilling fluids. The samples containing TiO2 and CuO NP exhibited a yield stress less than that of the base fluid, compared to the increased yield stress observed for the C and CM Fe3O4 NP. This behavior can be attributed to the fact that TiO2 and CuO NP may also act as deflocculants and prevent the gelation of bentonite suspensions. This study shows that commercial nanoparticles of TiO2 and CuO do not perform as well as the Fe3O4 NP on filtration but provide drilling fluids with lower yield stresses, thus they could be considered as alternatives to Fe3O4 in situations where the rheological properties are critical.

2018 ◽  
Author(s):  
Ζήσης Βρύζας

Η γεώτρηση αποτελεί την πλέον δαπανηρή εργασία σε μια καμπάνια εξεύρεσης και παραγωγής υδρογονανθράκων. Πέραν αυτού συνιστά και την μοναδική διεργασία που δίνει τη δυνατότητα ακριβούς προσδιορισμού των αποθεμάτων στο υπέδαφος. Ο πολφός (γεωτρητικά ρευστά) είναι το ‘αίμα’ της γεώτρησης: παρέχει πίεση, μεταφορά τριμμάτων/θραυσμάτων από τον πυθμένα του φρέατος, ψύξη και λίπανση κοπτικού και στήλης, καθώς επίσης διατηρεί τα θραύσματα εν αιωρήσει όταν υπάρχει διακοπή της κυκλοφορίας. Ως ρευστό γεώτρησης (drilling fluid) χρησιμοποιείται συνήθως ένα αιώρημα πηλού και άλλων υλικών σε νερό. Τα ρευστά διάτρησης με βάση το νερό αποτελούνται από α) νερό, το οποίο αποτελεί την συνεχή φάση και παρέχει το αρχικό ιξώδες (φρέσκο ή θαλασσινό), β) ενεργά στερεά για την ενίσχυση του ιξώδους και του σημείου διαρροής (μπεντονίτης, που συνιστάται στην περίπτωση του φρέσκου νερού και ατταπουλγίτης, αμίαντος ή σιπιόλιθος, που συνιστώνται στην περίπτωση του θαλασσινού νερού), και γ) αδρανή στερεά για την επίτευξη της απαιτούμενης πυκνότητας (βαρύτης, θειούχος μόλυβδος, σιδηρομεταλλεύματα ή χαλαζιακά υλικά).Τα γεωτρητικά ρευστά αποτελούν το 10-20% του συνολικού κόστους κατά την διάρκεια μιας γεώτρησης. Ποσοστό πολύ υψηλό όταν μιλάμε για επενδύσεις εκκατομυρίων δολλαρίων. Λόγω των ολοένα πιο βαθιών αλλά και περίπλοκων γεωλογικών σχηματισμών υπάρχει τεράστια ανάγκη από την πετρελαική βιομηχανία για καινούργια και περισσότερο αποδοτικά γεωτρητικά ρευστά τα οποία θα μπορούν να ανταπεξέλθουν στα ολοένα και πιο απαιτητικά περβάλλοντα θερμοκρασίας και πίεσης. Τα σημαντικότερα ζητήματα τα οποία καλούνται να ανταποκριθούν τα ρευστά είναι οι ολοένα αυξανόμενες συνθήκες πίεσης και θερμοκρασίας στο υπέδαφος που είναι απόροια της αναζήτησης υδρογονανθράκων σε πλέον δύσβατες περιοχές με μεγαλύτερα βάθη που αυξάνουν τους κινδύνους και το κόστος για μια γεώτρηση. Η απώλεια ρευστού κυκλοφορίας (fluid loss) είναι ένα από τα σημαντικότερα και πλέον δαπανηρά προβλήματα κατά την διαδικασία μιας γεώτρησης. Ως απώλεια ρευστού κυκλοφορίας ορίζεται η συνολική ή μερική απώλεια των ρευστών της γεώτρησης σε εξαιρετικά διαπερατές ζώνες (porous sands), σε σπηλαιώδεις σχηματισμούς (cavernous zones), σε φυσικές ρηγματώσεις (natural fractures) και σε ρηγματώσεις προκαλούμενες κατά τη διάτρηση (induced fractures). Τα τελευταία χρόνια έχουν γίνει αρκετές προσπάθειες για την βελτίωση των γεωτρητικών ρευστών με την χρήση νανοσωματιδίων, τα οποία έχουν τη δυνατότητα να βελτιώσουν τις ιδιότητες των γεωτρητικών ρευστών όταν προστίθενται ακόμα και σε χαμηλές συγκεντρώσεις (<1 wt%). Οι μοναδικές τους ιδιότητες σχετίζονται με το μικρό τους μέγεθος και επομένως τον εξαιρετικά μεγάλο λόγο επιφάνειας προς όγκο.Σε αυτή την εργασία, εξετάστηκαν διάφορα εμπορικά νανοσωματίδια (Fe2O3, Fe3O4, SiO2) καθώς επίσης συντέθηκαν, με την μέθοδο της συγκαταβύθισης, νανοσωματιδία μαγνητίτη (custom-made Fe3O4), με και χωρίς επικάλυψη κιτρικού οξέος, τα οποία ερευνήθηκαν ως προς την ικανότητα τους να βελτιώσουν τις ρεολογικές ιδιότητες και την απώλεια ρευστών σε αιωρήματα μπετονίτη. Προκειμένου να χαρακτηρισθούν φυσικοχημικά τα αιωρήματα υπέστησαν ξήρανση με κοκκοποίηση σε θερμοκρασία υγρού Ν2 και κρυοξήρανση. Η μορφολογία, η κρυσταλλική δομή και οι επιφανειακές ομάδες των ξηρών κόνεων εξετάσθηκαν με ηλεκτρονική μικροσκοπία HR-TΕM, περίθλαση ακτίνων Χ (XRD), φυσική ρόφηση Ν2 και φασματοσκοπία FTIR. Οι αλληλεπιδράσεις των σωματιδίων μπετονίτη με τα νανοσωματίδια και οι διάφορες δομές που δημιουργούνται και πως τελικά αυτές επηρεάζουν τις ρεολογικές ιδιότητες των αιωρημάτων εξετάστηκαν με το HR-TEM στους 25°C και 60°C. Με βάση τις εικόνες από το HR-TEM, ένα μοντέλο αλληλεπιδράσεων μεταξύ των διαφορετικών τύπων νανοσωματιδίων και σωματιδίων μπετονίτη δημιουργήθηκε για πρώτη φορά για τέτοια αιωρήματα. Οι ρεολογικές ιδιότητες των παραγόμενων δειγμάτων εξετάστηκαν και σε συνθήκες ατμοσφαιρικής πίεσης (μέχρι 70°C) με την χρήση περιστροφικού ιξωδόμετρου (Grace M3600-Couette type geometry) αλλά και σε συνθήκες υψηλής πίεσης και θερμοκρασίας (69 bar-121°C) (Chandler 7600 HPHT viscometer). Το μοντέλο Herschel-Bulkley χρησιμοποιήθηκε για να περιγράψει τη μεταβολή του ιξώδους με τη μεταβολή των ρεολογικών παραμέτρων δείχνοντας εξαιρετική εφαρμογή για τις διαφορετικές πειραματικές μετρήσεις με συντελεστές συσχέτισης (R2) >0.99 σε όλες τις περιπτώσεις. Οι ρεολογικές μετρήσεις έδειξαν ότι η προσθήκη των νανοσωματιδίων βελτιώνει σημαντικά τις ρεολογικές ιδιότητες των αιωρημάτων μπετονίτη στις διάφορες συνθήκες πίεσης και θερμοκρασίας. Οι απώλειες ρευστών (fluid loss) εξετάστηκαν με φιλτροπρέσες υψηλής πίεσης και θερμοκρασίας (20.7 bar και 121°C) οι οποίες υπολογίζουν τον ρυθμό διήθησης του πολφού μέσω του χρησιμοποιούμενου φίλτρου (κεραμικός δίσκος). Η μεγαλύτερη μείωση στην απώλεια ρευστών επιτεύχθηκε για το δείγμα που περιείχε 0.5 wt% custom-made Fe3O4 με μείωση -40% σε σχέση με το αρχικό δείγμα μπετονίτη που δείχνει την τεράστια ικανότητα των νανοσωματιδίων να βελτιώσουν σημαντικά τις απώλειες ρευστών ακόμα και σε τόσο μικρές συγκεντρώσεις. Τέλος, εξετάστηκε η ικανότητα των παραγόμενων ρευστών να αλλάζουν τις ρεολογικές τους ιδιότητες υπό την επίδραση διάφορων μαγνητικών πεδίων (μέχρι 0.7 Tesla). Τα αποτελέσματα έδειξαν ότι τα καινούργια γεωτρητικά ρευστά έχουν την ικανότητα να αυξάνουν την τάση διολίσθησης (yield stress) έως και 300% σε σχέση με αυτή που μετρήθηκε χωρίς την εφαρμογή μαγνητικού πεδίου. Αυτό είναι κάτι πολύ σημαντικό που επιτρέπει την χρήση έξυπνων ρευστών (smart drilling fluids) τα οποία μπορούν να εξοικονομήσουν και χρόνο αλλά και κόστη κατά την διάρκεια μιας γεώτρησης.Τα νανοσωματίδια δείχνουν πολλές ελπιδοφόρες δυνατότητες σε εφαρμογές γεωτρήσεων αφού έχουν τη δυνατότητα να βελτιώσουν ή και να λύσουν το πρόβλημα της απώλειας ρευστών, όταν προστίθενται ακόμα και σε χαμηλές συγκεντρώσεις (>0.5 wt%), ενώ ταυτόχρονα βελτιστοποιούν τις ρεολογικές ιδιότητες των γεωτρητικών ρευστών. Η χρήση τους για την ανάπτυξη βελτιωμένων γεωτρητικών ρευστών υπόσχεται να αλλάξει την βιομηχανία των γεωτρήσεων και να την βοηθήσει να εξορυχθούν πολύπλοκοι γεωλογικοί σχηματισμοί πιο αποδοτικά αλλά και οικονομικά.


Author(s):  
Zisis Vryzas ◽  
Omar Mahmoud ◽  
Hisham Nasr-El-Din ◽  
Vassilis Zaspalis ◽  
Vassilios C. Kelessidis

A successful drilling operation requires an effective drilling fluid system. Due to the variety of downhole conditions across the globe, the fluid system should be designed to meet complex challenges such as High-Pressure/High-Temperature (HPHT) environments, while promoting better productivity with a minimum interference for completion operations. This study aims to improve the rheological and fluid loss properties of water-bentonite suspensions by using both commercial (C-NP) and custom-made (CM-NP) iron oxide (Fe3O4) nanoparticles (NP) as drilling fluid additives. Superparamagnetic Fe3O4 NP were synthesized by the co-precipitation method. Both types of nanoparticles were characterized by a High Resolution Transmission Electron Microscope (TEM) and X-ray Diffraction (XRD). Base fluid (BF), made of deionized water and bentonite at 7wt%, was prepared according to American Petroleum Institute (API) procedures and nanoparticles were added at 0.5wt%. A Couette-type viscometer was used to analyze the rheological characteristics of these fluids at different shear rates and various temperatures (up to 158°F). The rheological parameters were obtained from analysis of viscometric data using non-linear regression. The API Low-Pressure/Low-Temperature (LPLT) and HPHT fluid filtrate volumes were measured, using a standard API LPLT static filter press (100 psi, 77°F) and an API HPHT filter press (300 psi, 250°F). Observation of the porous matrix morphology of the produced filter cakes was done with Scanning Electron Microscope (SEM). TEM showed that the mean diameter of the CM-NP was 7–8 nm, with measured surface areas between 100–250 m2/g. The C-NP had an average diameter of <50 nm, as per manufacturer specifications. The XRD of the CM-NP revealed peaks corresponding to pure crystallites of magnetite (Fe3O4) with no impurities. Rheological analysis showed very good fitting by the Herschel-Bulkley model with coefficient of determination (R2) greater than 0.99. Rheological properties of all samples were affected by higher temperatures, with increase in yield stress, decrease in flow consistency index (K) and slight increase in flow behavior index (n). Fluid filtration results indicated a decrease in the LPLT fluid loss and an increase in the filter cake thickness compared to the BF upon addition of higher concentrations of C-NP, because of a decrease in filter cake permeability. At HPHT conditions, samples with 0.5wt% C-NP had a smaller fluid loss by 34.3%, compared to 11.9% at LPLT conditions. CM-NP exhibited even higher reduction in the fluid loss at HPHT conditions of 40%. Such drilling fluids can solve difficult drilling problems and aid in achieving the reservoir’s highest potential by eliminating the use of aggressive, potentially damaging chemicals. Exploitation of the synergistic interaction of the utilized components can produce a water-based system with excellent fluid loss characteristics while maintaining optimal rheological properties.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6718
Author(s):  
Muhammad Awais Ashfaq Alvi ◽  
Mesfin Belayneh ◽  
Sulalit Bandyopadhyay ◽  
Mona Wetrhus Minde

In recent years, several studies have indicated the impact of nanoparticles (NPs) on various properties (such as viscosity and fluid loss) of conventional drilling fluids. Our previous study with commercial iron oxide NPs indicated the potential of using NPs to improve the properties of a laboratory bentonite-based drilling fluid without barite. In the present work, iron oxide NPs have been synthesized using the co-precipitation method. The effect of these hydrophilic NPs has been evaluated in bentonite and KCl-based drilling fluids. Rheological properties at different temperatures, viscoelastic properties, lubricity, and filtrate loss were measured to study the effect of NPs on the base fluid. Also, elemental analysis of the filtrate and microscale analysis of the filter cake was performed. Results for bentonite-based fluid showed that 0.019 wt% (0.1 g) of NPs reduced the coefficient of friction by 47%, and 0.0095 wt% (0.05 g) of NPs reduced the fluid loss by 20%. Moreover, for KCl-based fluids, 0.019 wt% (0.1 g) of additive reduced the coefficient of friction by 45%, while higher concentration of 0.038 wt% (0.2 g) of NPs shows 14% reduction in the filtrate loss. Microscale analysis shows that presence of NPs in the cake structure produces a more compact and less porous structure. This study indicates that very small concentration of NPs can provide better performance for the drilling fluids. Additionally, results from this work indicate the ability of NPs to fine-tune the properties of drilling fluids.


2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Muhammad Awais Ashfaq Alvi ◽  
Mesfin Belayneh ◽  
Kjell Kåre Fjelde ◽  
Arild Saasen ◽  
Sulalit Bandyopadhyay

Abstract Lately, nanoparticles (NPs) have shown the potential to improve the performance of oil well fluids significantly. Several studies have reported the ability of NPs to produce improved properties of both water and oil-based drilling fluids. In this study, hydrophobic iron oxide NPs were synthesized by thermal decomposition of iron pentacarbonyl in an inert atmosphere, and its performance was tested in the oil-based drilling fluid with 90/10 oil-to-water ratio (base fluid). Oil-based drilling fluids treated with nanofluids were formulated by adding 0.5 wt% and 1.0 wt% iron oxide NPs in hexane solution to the base drilling fluid. The base fluid and the nanofluid-treated drilling fluids were evaluated by characterizing their rheological properties at different temperatures, viscoelastic properties, lubricity, filtrate loss, static and dynamic settling, and separation properties. Results showed that 0.5 wt% iron oxide dispersed in hexane reduced the high pressure high temperature (HPHT) filtrate loss by 70%, filter cake thickness by 55%, and the coefficient of friction by 39%. Moreover, the nanofluid based drilling fluid reduced the free oil layer caused by syneresis during aging at high temperature by 16.3% compared to the base fluid. This study has shown that hydrophobic iron oxide NPs have the potential to improve the properties of oil-based drilling fluid.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Oscar Contreras ◽  
Mortadha Alsaba ◽  
Geir Hareland ◽  
Maen Husein ◽  
Runar Nygaard

This paper presents a comprehensive experimental evaluation to investigate the effects of adding iron-based and calcium-based nanoparticles (NPs) to nonaqueous drilling fluids (NAFs) as a fluid loss additive and for wellbore strengthening applications in permeable formations. API standard high-pressure-high-temperature (HPHT) filter press in conjunction with ceramic disks is used to quantify fluid loss reduction. Hydraulic fracturing experiments are carried out to measure fracturing and re-opening pressures. A significant enhancement in both filtration and strengthening was achieved by means of in situ prepared NPs. Our results demonstrate that filtration reduction is essential for successful wellbore strengthening; however, excessive reduction could affect the strengthening negatively.


2021 ◽  
Vol 11 (1) ◽  
pp. 137-145
Author(s):  
Hani Ali Al Khalaf ◽  
Zeeshan Ahmad ◽  
Gabriella Kovácsné Federer

This study aims to evaluate the effect of wheat flour as a natural and environmentally friendly material on the properties of water-based mud. Recently, many experiments have been conducted with various additives to improve the properties of drilling fluids. The effect of using wheat flour as a new additive to drilling fluid was studied to improve rheological and filtration properties. In the laboratory several samples of water-based mud were prepared, different concentrations of wheat flour from 1 wt% to 7 wt% were added to the mud and tested by using a Fann 35 viscometer, 140 Fann Mud balance, and an API LT-LP filter press. The results showed that adding 7 wt% of wheat flour was the optimal concentration. It was found that the apparent viscosity and yield point increased by 50% and 35%, respectively, when 7 wt% of wheat flour was added to the water-based drilling fluid. Likewise, the fluid loss rate was reduced by 25% when using the same concentration of wheat flour.


Author(s):  
Muhammad Awais Ashfaq Alvi ◽  
Mesfin Belayneh ◽  
Kjell Kåre Fjelde ◽  
Arild Saasen ◽  
Sulalit Bandyopadhyay

Abstract In recent years, nanoparticles (NPs) have shown the potential to improve the performance of oil well fluids significantly. Several studies have reported the ability of NPs to produce improved properties of both water and oil-based drilling fluids. In this paper, hydrophobic iron oxide NPs were synthesized by thermal decomposition of iron pentacarbonyl in an inert atmosphere, and its performance was tested in the oil-based drilling fluid with 90/10 oil to water ratio (base fluid). Oil-based drilling fluids treated with nanofluids were formulated by adding 0.5 wt. % and 1.0 wt. % iron oxide NPs in hexane solution to the base drilling fluid. The base fluid and the nanofluid treated drilling fluids were evaluated by characterizing their rheological properties at different temperatures, viscoelastic properties, lubricity, filtrate loss, static & dynamic settling, and separation properties. Results showed that 0.5 wt. % iron oxide dispersed in hexane reduced the HPHT filtrate loss by 70%, filter cake thickness by 55%, and the coefficient of friction by 39%. Moreover, the nanofluid based drilling fluid reduced the free oil layer caused by syneresis during aging at high temperature by 16.3% compared to the base fluid. This study has shown that hydrophobic iron oxide NPs have the potential to improve the properties of oil-based drilling fluid.


2014 ◽  
Vol 641-642 ◽  
pp. 447-450 ◽  
Author(s):  
Long Li ◽  
Xu Bo Yuan ◽  
Cha Ma ◽  
Rong Chao Cheng ◽  
Yu Ping Yang

A new type of humic acid acetamide FLHA was synthesized by chemical modification of humic acid with long chain fatty amine, and the effect of humic acid acetamide on the rheological properties of gas-to-liquid (GTL) based drilling fluids was investigated. The results indicated that FLHA had good capacity of filtration reduction under 150 °C. Moreover, FLHA can improve the stability of GTL-based drilling fluids. As a result, FLHA is an good fluid loss additive for GTL-based drilling fluids, and it can optimizate drilling fluid system formulation to make drilling fluids have good rheological properties, filtration properties and environmental protection function.


1969 ◽  
Vol 9 (04) ◽  
pp. 403-411 ◽  
Author(s):  
B.K. Sinha ◽  
Harvey T. Kennedy

Abstract Recommendations are made for obtaining consistent and reproducible test data on drilling fluids having identical composition. Previously, such a procedure has been difficult to accomplish even when the fluids were mixed in similar equipment. A survey of work in this area indicates that previous methods have been unsatisfactory because previous methods have been unsatisfactory because (1) the muds are extremely sensitive to the duration and violence of agitation during a normal mixing routine, and (2) gelling of the muds occurs before the properties can reach constant values. This gelling is caused by water evaporation resulting from the increase in temperature associated with the agitation. The work shows that these problems largely can be overcome by (1) agitating the constituents of the drilling fluid more vigorously, (2) maintaining a fairly constant temperature, and(3) Protecting the fluid from evaporation. When these steps are followed, the fluid properties approach asymptotic values that do not change by prolonged or accelerated agitation or by aging for a month. The time required to reach asymptotic values or a stabilized state is from 2 to 6 hours and is a function of the mud composition. Introduction Preparation of drilling fluids in the laboratory to determine their suitability to meet specific drilling requirements or to serve as a base fluid to evaluate the effectiveness of thinners, dispersants or other additives normally begins with combining measured quantities of the constituents and stirring them for a short time in a low-speed mixer. This is done to obtain a uniform mixture and to hydrate clays. Then the fluid is further agitated in a higher-speed device (Hamilton Beach mixer or Waring blender) to disperse more thoroughly and clay particles The biggest obstacle in the laboratory investigation of drilling fluids has been the lack of a method of producing a mixture by which reproducible results of the measured properties could be obtained. Numerous investigators have encountered this difficulty. Prior to 1929, density was the only property of mud that customarily was measured. The use of Wyoming bentonite on a large scale after 1929 was mainly responsible for the development of more elaborate testing procedures and for the application of the principles of colloid chemistry to the drilling fluids. Ambrose and Loomis in 1931 were among the first to recognize the plastic flow characteristics of drilling fluids, although Bingham in 1916 had observed The same phenomenon with dilute clay suspensions. Marsh introduced the Marsh funnel for field testing in 1931. By this time, non-Newtonian characteristics of drilling fluids were established. The Stormer and MacMichael viscometers were used to study the rheological properties of the fluids. In the 1930's and early 1940's, the work conducted by several investigators contributed toward a better understanding of drilling fluids. In the mid 1930's, fluid-loss and the associated mud-cake-forming properties of drilling fluids were recognized as important to the behavior of these fluids. The other properties of drilling fluids, including gel strength, pH, and sand content soon were recognized. In 1937, API published its first recommended procedure for test methods. Since that time, these procedures have been revised periodically. The latest edition, RP-13B, was published in 1961 However, in spite of the recognized need for a method of mixing that provides drilling fluids with stabilized properties, no such method previously has been described. SPEJ P. 403


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Arild Saasen

Controlling the annular frictional pressure losses is important in order to drill safely with overpressure without fracturing the formation. To predict these pressure losses, however, is not straightforward. First of all, the pressure losses depend on the annulus eccentricity. Moving the drillstring to the wall generates a wider flow channel in part of the annulus which reduces the frictional pressure losses significantly. The drillstring motion itself also affects the pressure loss significantly. The drillstring rotation, even for fairly small rotation rates, creates unstable flow and sometimes turbulence in the annulus even without axial flow. Transversal motion of the drillstring creates vortices that destabilize the flow. Consequently, the annular frictional pressure loss is increased even though the drilling fluid becomes thinner because of added shear rate. Naturally, the rheological properties of the drilling fluid play an important role. These rheological properties include more properties than the viscosity as measured by API procedures. It is impossible to use the same frictional pressure loss model for water based and oil based drilling fluids even if their viscosity profile is equal because of the different ways these fluids build viscosity. Water based drilling fluids are normally constructed as a polymer solution while the oil based are combinations of emulsions and dispersions. Furthermore, within both water based and oil based drilling fluids there are functional differences. These differences may be sufficiently large to require different models for two water based drilling fluids built with different types of polymers. In addition to these phenomena washouts and tool joints will create localised pressure losses. These localised pressure losses will again be coupled with the rheological properties of the drilling fluids. In this paper, all the above mentioned phenomena and their consequences for annular pressure losses will be discussed in detail. North Sea field data is used as an example. It is not straightforward to build general annular pressure loss models. This argument is based on flow stability analysis and the consequences of using drilling fluids with different rheological properties. These different rheological properties include shear dependent viscosity, elongational viscosity and other viscoelastic properties.


Sign in / Sign up

Export Citation Format

Share Document