Influence of Tip Clearance on the Hydrodynamic Damping Characteristics of a Hydrofoil

2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Yongshun Zeng ◽  
Zhifeng Yao ◽  
Shijie Zhang ◽  
Fujun Wang ◽  
Ruofu Xiao

Abstract Tip clearance in hydraulic machines may complicate the fluid–structure interaction (FSI) effects. In this investigation, a mode-based approach (modal work) is evaluated and employed to quantitatively predict the added mass, added stiffness, and hydrodynamic damping ratio, in relation to the first-order bending mode of a vibrating hydrofoil. The investigated relative tip clearance ranges from 0.067% to 2% of the span length. The predicted vortex shedding frequency, natural frequency, and hydrodynamic damping ratio of the hydrofoil are in good agreement with the previously published experimental results, with relative deviations within 9.92%, 6.97%, and 11.23%, respectively. Simulation results show that the added mass, added stiffness, and hydrodynamic damping ratio increase inversely as the tip clearance increases. In particular, as the relative tip clearance increases from 0.067% to 2%, the added mass in still water, the added stiffness, and hydrodynamic damping ratio at a velocity of 10 m/s decrease by 18.66%, 9.36%, and 27.99%, respectively. As the tip clearance increases, the inversely increased pressure difference between the upper and lower surfaces of the vibrating hydrofoil is the main reason for the inversely increased hydrodynamic damping ratio. This is due to the energy leakages via the tip clearance region increase as the tip clearance increases, which may cause less fluid force to resist the vibration of the hydrofoil, resulting in less negative modal work done by the fluid load on the hydrofoil.

2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Yongshun Zeng ◽  
Zhifeng Yao ◽  
Jiangyong Gao ◽  
Yiping Hong ◽  
Fujun Wang ◽  
...  

Added mass and hydrodynamic damping play significant roles in fluid-structure interaction (FSI) in hydraulic turbines. Added mass can reduce natural frequencies, while hydrodynamic damping could result in a higher amplitude decay speed of the vibration. In order to quantify the added mass and hydrodynamic damping of a three-dimensional (3D) NACA 0009 hydrofoil with a blunt trailing edge, a two-way FSI simulation method was employed. The effects of grid scale, time-step, turbulence model, exciting force, and numerical damping on the calculation accuracy of the two-way FSI numerical simulation were analyzed in great detail through comparison with the previously published experimental data. Hydraulic force was obtained by using a transitional shear stress transport model at the flow region of the Reynolds number ReL = 0.2 × 106–2 × 106. The vortex shedding frequency, the natural frequency of the first-order bending mode in water, and the hydrodynamic damping ratio obtained from the numerical simulations agree well with the experimental data, with maximum deviations in 6.12%, 4.53%, and 8.82%, respectively. As the flow velocity increases, the natural frequency may not significantly change, while the added mass coefficient gradually increases, considering the effect of added stiffness. Above the first-order bending mode lock-in region, the results indicate that the first-order bending mode hydrodynamic damping ratio increases linearly with velocity. The present numerical achievements offer a higher level of accuracy for predicting the added mass and hydrodynamic damping characteristics of a hydrofoil.


Author(s):  
Nimmy Thankom Philip ◽  
S. Nallayarasu ◽  
S. K. Bhattacharyya

Damping elements are used in ships and offshore structures as response reduction devices for maintaining the hydrodynamic response within acceptable limits. The use of such elements so far has been based on past experience or using empirical based design approach. An investigation of the wave excitation forces acting on these structures with and without damping elements may give an insight into the damping effects of such elements. Also understanding the flow pattern and the magnitude of flow variation around these elements may be useful to improve the design methods. In the present study, measurement of damping forces and response were carried out to establish the relationship between wave frequency amplitude and damping ratio. It was observed that the damping varies with wave period non-linearly and linearly with wave height. Also it was observed that increase in added mass combined with viscous damping is a key factor for the effectiveness of heave plates in reducing motion response of spar platforms. Of the various configurations tested, the spar with double heave plate at the bottom has higher damping compared to other configurations.


2012 ◽  
Vol 538-541 ◽  
pp. 2298-2303
Author(s):  
Shi Kai Luo ◽  
Guo Fang Ding ◽  
Jing Li Li ◽  
Yan Song Sha ◽  
Qing Min Cheng ◽  
...  

In this paper, we prepared foaming silicon rubber (PVMQ) /isobutylene-isoprene rubber (IIR) composites with chemical foaming technology. The DMA tests results showed that these foaming materials have effective damping characteristics in a wide temperature range. With the special vibrator, we found that the PVMQ/IIR foams that we prepared were the damping materials which has wide frequency domain, because they can keep high damping ratio in a wide frequency domain. When the preloading was between 1.0 mm and 1.7 mm, the structural damping did not change obviously. According to tests, we found that the damping ratio of these foams was fit to the simple equation .


Author(s):  
Wayne E. Whiteman ◽  
Aldo A. Ferri

Abstract The dynamic behavior of a beam-like structure undergoing transverse vibration and subjected to a displacement-dependent dry friction force is examined. In Part I, the beam is modeled by a single mode while Part II considers multi-mode representations. The displacement dependence in each case is caused by a ramp configuration that allows the normal force across the sliding interface to increase linearly with slip displacement. The system is studied first by using first-order harmonic balance and then by using a time integration method. The stick-slip behavior of the system is also studied. Even though the only source of damping is dry friction, the system is seen to exhibit “viscous-like” damping characteristics. A strong dependence of the equivalent natural frequency and damping ratio on the displacement amplitude is an interesting result. It is shown that for a given set of parameter values, an optimal ramp angle exists that maximizes the equivalent damping ratio. The appearance of two dynamic response solutions at certain system and forcing parameter values is also seen. Results suggest that the overall characteristics of mechanical systems may be improved by properly configuring frictional interfaces to allow normal forces to vary with displacement.


1986 ◽  
Vol 108 (1) ◽  
pp. 7-14 ◽  
Author(s):  
M. Inoue ◽  
M. Kuroumaru ◽  
M. Fukuhara

Performance testing and detailed flow measurements were made in an axial compressor rotor with various tip clearances. The experiments were conducted on the condition of the same incidence angle at midspan. Thus, the effect of tip clearance distinguished from that of incidence angle was investigated on the overall performance, work-done factor, blockage factor, and increases in displacement, momentum, and blade-force-deficit thicknesses of the casing wall boundary layer, The phase-locked flow patterns obtained by the multisampling technique show clear evidence of a leakage vortex core behind the rotor. Behavior of the leakage vortex was clarified for various tip clearances by examining loci of the vortex center, decay characteristics of the vorticity at the center, and the total amount of vorticity shed from the blade tip. These results were compared with the leakage vortex model presented by Lakshminarayana.


2018 ◽  
Vol 47 (5) ◽  
pp. 377-385 ◽  
Author(s):  
Kannan Murugesan ◽  
Kalaichelvan K. ◽  
M.P. Jenarthanan ◽  
Sornakumar T.

Purpose The purpose of this paper is to investigate the use of embedded Shape Memory Alloy (SMA) nitinol wire for the enhancement of vibration and damping characteristics of filament-wound fiber-reinforced plastic composite hollow shafts. Design/methodology/approach The plain Glass Fiber-Reinforced Plastic (GFRP) and plain Carbon Fiber-Reinforced Plastic (CFRP) hollow shafts were manufactured by filament winding technique. Experimental modal analysis was conducted for plain hollow shafts of C1045 steel, GFRP and CFRP by subjecting them to flexural vibrations as per ASTM standard C747, with both ends clamped (C-C) end condition to investigate their vibration and damping behavior in terms of first natural frequency, damping time and damping ratio. Nitinol wires pre-stressed at various pre-strains (2, 4 and 6 per cent) were embedded with CFRP hollow shafts following same manufacturing technique, and similar experimental modal analysis was carried out by activating nitinol wires. The first natural frequencies of all the shaft materials were also predicted theoretically and compared with experimental measurements. Findings Among the three materials C1045 steel, plain GFRP and plain CFRP, the vibration and damping behavior were found to be the best for plain CFRP. Hence, CFRP shafts were considered for further improvement by embedding nitinol wires at pre-stressed condition. For CFRP shafts embedded with nitinol wires, the damping time decreased; and damping ratio and first natural frequency increased with increase in percentage of pre-strain. In comparison with plain CFRP, 7 per cent increase in first natural frequency and 100 per cent increase in damping ratio were observed for nitinol embedded CFRP shafts with 6 per cent pre-strain. Theoretical predictions of the first natural frequencies agree well with the experimental results for all the shaft materials. Originality/value The effect of nitinol on vibration and damping characteristics of filament wound hollow CFRP composite shafts with different pre-strains has not been studied extensively by the previous researchers. This paper addresses the effect of embedded nitinol wires pre-stressed at three varied pre-strains, that is, 2, 4 and 6 per cent on the vibration and damping characteristics of composite hollow CFRP shafts manufactured by filament winding technique.


Author(s):  
M. T. Stickland ◽  
T. J. Scanlon ◽  
I. A. Craighead ◽  
J Fernandez

Measurement of the damped oscillation of a section of the UK East Coast Main Line (ECML) catenary/contact wire system was undertaken, and the natural frequency and mechanical damping were found to be 1.4Hz and 0.05 respectively. This information was used to assess the effect of increasing the mechanical damping ratio on the susceptibility of the system to an aerodynamic galloping instability. The section of line tested was known to gallop at wind speeds of approximately 40 mile/h, and theoretical and experimental work verified this. A friction damper arm was designed and three units were fitted to the section of line affected. The introduction of increased mechanical damping was found to raise the mechanical damping coefficient of the line to between 0.095 and 0.18, and the mathematical analysis produced a theoretical wind speed for galloping oscillation of between 75 and 141 mile/h respectively. For over a year since the units were fitted, no problems with galloping instability have been observed.


2014 ◽  
Vol 1051 ◽  
pp. 906-909
Author(s):  
Xiang Jun Kong ◽  
Chong Zheng Chen

Sand is used in the pump-sand box-isolation system, studying the initial displacement, particle size and packing rate how to affect the damping ratio by free vibration experiments. The result shows that the initial displacement of the system has less effect on damping ratio, the particle packing rate is a significant influence factor of damping ratio, selecting the appropriate particle packing rate can get the maximum damping ratio, reducing the particle size can increase the system damping ratio, but the damping ratio no longer obviously changes when the particle size of is less than 1.5mm. In general, the packing rate needs to be controlled at below 70% in metal spring or rubber isolator system. This result can provide the basis for the design of particle damping vibration isolation system.


2016 ◽  
Vol 11 ◽  
pp. 1-6
Author(s):  
K. Karthik ◽  
R. Rohith Renish ◽  
I. Irfan Ahmed ◽  
T. Niruban Projoth

In this research aims to study the damping characteristics of hybrid polymer composite, which can be used in engineering structures and in many other applications. Hybrid composites are namely Glass fiber and carbon filler reinforced with polyester and epoxy matrix have been prepared by vacuum bag molding fabrication technique. Then the free vibration test were conducted using FFT analyzer with Lab VIEW software. The damping ratio and natural frequency were investigated for fabricated composites. Then through ANSYS, the mode shapes and natural frequencies were determined and the results were compared with experimental results. The damping ratio increases with increased volume fractions of E-glass fibers for both the types of polymer composites. Vibrations are concerned to large structures such as aircraft, as well as small structures such as electronic equipments.


1990 ◽  
Vol 112 (2) ◽  
pp. 132-137
Author(s):  
T. Ito ◽  
K. Fujita

Many studies have been made with regard to added mass and added damping of the fluid in the case of simple circular cylinders by Chen, Fritz, Mulcahy, etc.; but those effects for the noncircular cylinders are hardly available. In this study, added mass and added damping of the fluid for the coaxial circular cylinders with projection are investigated by both the experiment utilizing one-degree of freedom cylindrical models and the analysis by comparing those for the simple circular cylinders. Also, the method to evaluate the damping ratio of the beam which has the fluid restraint was derived.


Sign in / Sign up

Export Citation Format

Share Document