Modeling of Axial Compressor with Large Tip Clearances

2021 ◽  
pp. 1-27
Author(s):  
Simon Evans ◽  
Junsok Yi ◽  
Sean Nolan ◽  
Liselle Joseph ◽  
Michael Ni ◽  
...  

Abstract In the drive for lower fuel consumption, engine designs for the next generation of single-aisle aircraft will require core sizes below 3 lb/s and OPRs above 50. Traditionally, these core sizes are the domain of centrifugal compressors, but materials limit OPR in these machines. An all-axial HPC at this core size, however, comes with limitations associated with the small blade spans at the back of the HPC, as clearances, fillets and leading edges do not scale with the core size. The result is a substantial efficiency penalty, driven primarily by the tip leakage flow produced by the larger clearance-to-span ratio. To enable small-core, high-OPR, all-axial compressors, mitigating technologies need to be developed and implemented to reduce this penalty. For this technology development to be successful, it is imperative that predictive design tools accurately model the overall flow physics and trends of the technologies developed. In this paper we describe an effort to determine whether different modeling standards are required for large clearance-to-span ratios, and if so, identify criteria for an appropriate solver and/or mesh. Multiple models are run and results compared with data collected in the NASA-GRC Low-Speed Axial Compressor. These comparisons show that steady RANS solvers can predict the pressure-rise characteristic to an acceptable level of accuracy, if careful attention is paid to mesh topology in the tip region. However, unsteady tools are necessary to accurately capture radial profiles of blockage and total pressure.

Author(s):  
Simon Evans ◽  
Junsok Yi ◽  
Sean Nolan ◽  
Liselle Joseph ◽  
Michael Ni ◽  
...  

Abstract In the drive for lower fuel consumption through increased bypass ratio and increased overall pressure ratio (OPR), engine designs for the next generation of single-aisle aircraft will require core sizes below 3 lb/s and OPRs above 50. Traditionally, these core sizes are the domain of centrifugal compressors, but materials limit pressure ratio in these machines to well below 50. An all-axial high pressure compressor (HPC) at this core size, however, comes with limitations associated with the small blade spans at the back of the HPC, as clearances, fillets and leading edges do not scale with the core size. The result is a substantial efficiency penalty, driven primarily by the tip leakage flow produced by the larger clearance-to-span ratio, which negates the cycle efficiency benefits of the high OPR. In order to enable small-core, high-OPR, all-axial compressors mitigating technologies need to be developed and implemented to reduce the large clearance-to-span efficiency penalty. However, for this technology development to be successful, it is imperative that predictive design tools accurately model the overall flow physics and trends of the technologies developed. In this paper we describe an effort to determine whether different modeling standards are required for a large clearance-to-span ratio, and if so, identify criteria for an appropriate solver and/or mesh. Multiple models are run and results compared with data collected in the NASA Glenn Research Center’s Low-Speed Axial Compressor. These comparisons show that steady Reynolds-Averaged Navier-Stokes (RANS) solvers can predict the pressure-rise characteristic to an acceptable level of accuracy, if careful attention is paid to mesh topology in the tip region. However, unsteady tools are necessary to accurately capture radial profiles of blockage and total pressure. The Delayed-Detached Eddy Simulation model was also used to run this geometry, but did not resolve any additional features not captured by the unsteady RANS simulation near stall.


Author(s):  
Zhibo Zhang ◽  
Xianjun Yu ◽  
Baojie Liu

The detailed evolutionary processes of the tip leakage flow/vortex inside the rotor passage are still not very clear for the difficulties of investigating of them by both experimental and numerical methods. In this paper, the flow fields near the rotor tip region inside the blade passage with two tip gaps, 0.5% and 1.5% blade height respectively, were measured by using stereoscopic particle image velocimetry (SPIV) in a large-scale low speed axial compressor test facility. The measurements are conducted at four different operating conditions, including the design, middle, maximum static pressure rise and near stall conditions. In order to analyze the variations of the characteristics of the tip leakage vortex (TLV), the trajectory, concentration, size, streamwise velocity, and the blockage parameters are extracted from the ensemble-averaged results and compared at different compressor operating conditions and tip gaps. The results show that the formation of the TLV is delayed with large tip clearance, however, its trajectory moves much faster in an approximately linear way from the blade suction side to pressure side. In the tested compressor, the size of the tip gap has little effects on the scale of the TLV in the spanwise direction, on the contrary, its effects on the pitch-wise direction is very prominent. Breakdown of the TLV were both found at the near-stall condition with different tip gaps. The location of the initiation of the TLV breakdown moves downstream from the 60% chord to 70% chord as the tip gap increases. After the TLV breakdown occurs, the flow blockage near the rotor tip region increases abruptly. The peak value of the blockage effects caused by the TLV breakdown is doubled with the tip gap size increasing from 0.5% to 1.5% blade span.


Author(s):  
Bhaskar Roy ◽  
A. M. Pradeep ◽  
A. Suzith ◽  
Dinesh Bhatia ◽  
Aditya Mulmule

The present study involves simulation of a single compressor rotor with a high hub-to-tip ratio blade. The study includes the effect of variation of tip gap, of tip shapes and of inlet axial velocity profiles, with inflows simulated similar to that of a typical rear stage environment of a multi-stage axial compressor. Numerical studies were carried out on a baseline rotor blade (without sweep or dihedral) and then on blades with sweep and dihedral applied at the tip region of the rotor. Simulation of these part-span sweep and dihedral shapes are done to study their effects on blade tip leakage flow. Results show that sweep and dihedral, in some cases, produce favorable tip flows, improving blade aerodynamics. Positive dihedral caused weakening of tip leakage vortex at design point as well as at peak pressure point. Negative dihedral may help postpone stall at the high pressure, low flow operation. Backward sweep weakened tip vortex at the design point. Contrary to some of the studies reported earlier forward sweep, when applied at the tip region, showed performance deterioration over the most of the operating range of the high hub-to-tip rotor.


2021 ◽  
Author(s):  
Chunill Hah

Abstract The flow physics in a large rotor tip gap in a 1.5-stage axial compressor is investigated in the current study. The flow structure in the rotor tip region is complex with several dominant vortical structures of opposite rotation, resulting in inhomogeneous and highly anisotropic turbulence. Earlier measurements show that eddy viscosity is negative over large parts of the tip region and eddy viscosity varies among stress/strain components. The present study aims to understand how the complex nature of rotor tip leakage flow affects compressor performance when the tip gap size is greater than 4–5% of the rotor span, which is typical of advanced small core engines. Unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) techniques are applied to study flow physics in a large rotor tip gap (5.5% of rotor span) in a 1.5-stage axial compressor. Calculated flow fields from the two different approaches are compared with available measurements and examined in detail. LES calculates the pressure rise in the present compressor fairly well, while URANS with a standard two-equation turbulence closure underpredicts the pressure rise by 15–20% of the measured values. The current study shows that URANS with the current turbulence closure produces much higher all-positive eddy viscosity in the tip-gap region compared to measurements and LES. The distribution of eddy viscosity in the URANS simulation is also wrong. Consequently, the flow in the tip region is highly damped with significantly larger blockage generation, which results in the tip leakage vortex (TLV) staying closer to the blade suction side compared to the measurement. When the TLV stays closer to the blade, both flow turning and the pressure rise across the compressor are reduced compared to the measurements. It appears that this effect is amplified by a large rotor tip gap.


Author(s):  
Yufan Zhang ◽  
Jiabin Li ◽  
Lucheng Ji

In the design of an axial compressor, many designers take advantage of this technology and employ contracted shroud. What is its impact on tip leakage flow and overall performance of the axial compressor? What is its mechanism? In this paper, the NASA Rotor67 is taken as a research case, and parameterized study is conducted to investigate the effects of shrouds with different inclined angles. The inclined angles range from 0° to 13°. Based on the above described plan, numerical simulations are conducted to the original rotor67 and its modified versions with inclined shroud. To remove factors that might interfere the results, original Rotor 67 and all the blades with modified shroud should be compared to their optimal design status. Adjoint optimization is used to give the optimum blade corresponding to each shroud with different blade inclined angles. Then adjoint optimization was used again to give the optimum meridional flowpath for all the cases with different shroud inclined angles. This provides a powerful tool to evaluate the accuracy of the aforementioned prediction. A detailed comparison is made between the original flowpath and the optimized ones. Numerical results are analyzed in detail between original Rotor67 and its modified versions. The results show that the shroud inclined angle has an effect on the overall performance of the blade. It will also redistribute the velocity triangles and the chordwise distribution of aero load in the tip region. Hence it exerts great influence on the tip leakage flow field in the meantime. Shroud with suitable inclined angles can suppress the developing of leakage vortex , and the best-inclined angle for rotor 67 is found to be roughly 11°.


2021 ◽  
Vol 5 ◽  
pp. 79-89
Author(s):  
Ahmad Fikri Mustaffa ◽  
Vasudevan Kanjirakkad

The stall margin of tip-critical axial compressors can be improved by using circumferential casing grooves. From previous studies, in the literature, the stall margin improvement due to the casing grooves can be attributed to the reduction of the near casing blockage. The pressure rise across the compressor as the compressor is throttled intensifies the tip leakage flow. This results in a stronger tip leakage vortex that is thought to be the main source of the blockage. In this paper, the near casing blockage due to the tip region aerodynamics in a low-speed axial compressor rotor is numerically studied and quantified using a mass flow-based blockage parameter. The peak blockage location at the last stable operating point for a rotor with smooth casing is found to be at about 10% of the tip chord aft of the tip leading edge. Based on this information, an optimised single casing groove design that minimises the peak blockage is found using a surrogate-based optimisation approach. The implementation of the optimised groove is shown to produce a stall margin improvement of about 5%.


Author(s):  
Reid A. Berdanier ◽  
Nicole L. Key

Large rotor tip clearances and the associated tip leakage flows are known to have a significant effect on overall compressor performance. However, detailed experimental data reflecting these effects for a multistage compressor are limited in the open literature. As design trends lead to increased overall compressor pressure ratio for thermal efficiency benefits and increased bypass ratios for propulsive benefits, the rear stages of the high-pressure compressor will become physically small. Because rotor tip clearances cannot scale exactly with blade size due to the margin needed for thermal growth considerations, relatively large tip clearances will be a reality for these rear stages. Experimental data have been collected from a three-stage axial compressor to assess performance with three-tip clearance heights representative of current and future small core machines. Trends of overall pressure rise, stall margin, and efficiency are evaluated using clearance derivatives, and the summarized data presented here begin to narrow the margin of tip clearance sensitivities outlined by previous studies in an effort to inform future compressor designs. Furthermore, interstage measurements show stage matching changes and highlight specific differences in the performance of rotor 1 and stator 2 compared to other blade rows in the machine.


Author(s):  
Yanfei Gao ◽  
Yangwei Liu ◽  
Luyang Zhong ◽  
Jiexuan Hou ◽  
Lipeng Lu

AbstractThe standard k-ε model (SKE) and the Reynolds stress model (RSM) are employed to predict the tip leakage flow (TLF) in a low-speed large-scale axial compressor rotor. Then, a new research method is adopted to “freeze” the turbulent kinetic energy and dissipation rate of the flow field derived from the RSM, and obtain the turbulent viscosity using the Boussinesq hypothesis. The Reynolds stresses and mean flow field computed on the basis of the frozen viscosity are compared with the results of the SKE and the RSM. The flow field in the tip region based on the frozen viscosity is more similar to the results of the RSM than those of the SKE, although certain differences can be observed. This finding indicates that the non-equilibrium turbulence transport nature plays an important role in predicting the TLF, as well as the turbulence anisotropy.


Author(s):  
Rubén Bruno Díaz ◽  
Jesuino Takachi Tomita ◽  
Cleverson Bringhenti ◽  
Francisco Carlos Elizio de Paula ◽  
Luiz Henrique Lindquist Whitacker

Abstract Numerical simulations were carried out with the purpose of investigating the effect of applying circumferential grooves at axial compressor casing passive wall treatment to enhance the stall margin and change the tip leakage flow. The tip leakage flow is pointed out as one of the main contributors to stall inception in axial compressors. Hence, it is of major importance to treat appropriately the flow in this region. Circumferential grooves have shown a good performance in enhancing the stall margin in previous researches by changing the flow path in the tip clearance region. In this work, a passive wall treatment with four circumferential grooves was applied in the transonic axial compressor NASA Rotor 37. Its effect on the axial compressor performance and the flow in the tip clearance region was analyzed and set against the results attained for the smooth wall case. A 2.63% increase in the operational range of the axial compressor running at 100%N, was achieved, when compared with the original smooth wall casing configuration. The grooves installed at compressor casing, causes an increase in the flow entropy generation due to the high viscous effects in this gap region, between the rotor tip surface and casing with grooves. These viscous effects cause a drop in the turbomachine efficiency. For the grooves configurations used in this work, an efficiency drop of 0.7% was observed, compared with the original smooth wall. All the simulations were performed based on 3D turbulent flow calculations using Reynolds Averaged Navier-Stokes equations, and the flow eddy viscosity was determined using the two-equation SST turbulence model. The details of the grooves geometrical dimensions and its implementation are described in the paper.


Sign in / Sign up

Export Citation Format

Share Document