Flow Physics in a Large Rotor Tip Gap in a Multi-Stage Axial Compressor

2021 ◽  
Author(s):  
Chunill Hah

Abstract The flow physics in a large rotor tip gap in a 1.5-stage axial compressor is investigated in the current study. The flow structure in the rotor tip region is complex with several dominant vortical structures of opposite rotation, resulting in inhomogeneous and highly anisotropic turbulence. Earlier measurements show that eddy viscosity is negative over large parts of the tip region and eddy viscosity varies among stress/strain components. The present study aims to understand how the complex nature of rotor tip leakage flow affects compressor performance when the tip gap size is greater than 4–5% of the rotor span, which is typical of advanced small core engines. Unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) techniques are applied to study flow physics in a large rotor tip gap (5.5% of rotor span) in a 1.5-stage axial compressor. Calculated flow fields from the two different approaches are compared with available measurements and examined in detail. LES calculates the pressure rise in the present compressor fairly well, while URANS with a standard two-equation turbulence closure underpredicts the pressure rise by 15–20% of the measured values. The current study shows that URANS with the current turbulence closure produces much higher all-positive eddy viscosity in the tip-gap region compared to measurements and LES. The distribution of eddy viscosity in the URANS simulation is also wrong. Consequently, the flow in the tip region is highly damped with significantly larger blockage generation, which results in the tip leakage vortex (TLV) staying closer to the blade suction side compared to the measurement. When the TLV stays closer to the blade, both flow turning and the pressure rise across the compressor are reduced compared to the measurements. It appears that this effect is amplified by a large rotor tip gap.

Author(s):  
Martina Ricci ◽  
Roberto Pacciani ◽  
Michele Marconcini ◽  
Andrea Arnone

Abstract The tip leakage flow in turbine and compressor blade rows is responsible for a relevant fraction of the total loss. It contributes to unsteadiness, and have an important impact on the operability range of compressor stages. Experimental investigations and, more recently, scale-resolving CFD approaches have helped in clarifying the flow mechanism determining the dynamics of the tip leakage vortex. Due to their continuing fundamental role in design verifications, it is important to establish whether RANS/URANS approaches are able to reproduce the effects of such a flow feature, in order to correctly drive the design of the next generation of turbomachinery. Base studies are needed in order to accomplish this goal. In the present work the tip leakage flow in axial compressor rotor blade cascade have been studied. The cascade was tested experimentally in Virginia Tech Low Speed Cascade Wind Tunnel in both stationary and moving endwall configurations. Numerical analyses were performed using the TRAF code, a state-of-the-art in-house-developed 3D RANS/URANS flow solver. The impact of the numerical framework was investigated selecting different advection schemes including a central scheme with artificial dissipation and a high-resolution upwind strategy. In addition, two turbulence models have been used, the Wilcox linear k–ω model and a non-linear eddy viscosity model (Realizable Quadratic Eddy Viscosity Model), which accounts for turbulence anisotropy. The numerical results are scrutinized using the available measurements. A detailed discussion of the vortex evolution inside the blade passage and downstream of the blade trailing edge is presented in terms of streamwise velocity, streamwise vorticity, and turbulent kinetic energy contours. The purpose is to identify guidelines for obtaining the best representation of the vortex dynamics, with the methodologies usually employed in routine design iterations and, at the same time, evidence their weak aspects that need further modelling efforts.


Author(s):  
Zhibo Zhang ◽  
Xianjun Yu ◽  
Baojie Liu

The detailed evolutionary processes of the tip leakage flow/vortex inside the rotor passage are still not very clear for the difficulties of investigating of them by both experimental and numerical methods. In this paper, the flow fields near the rotor tip region inside the blade passage with two tip gaps, 0.5% and 1.5% blade height respectively, were measured by using stereoscopic particle image velocimetry (SPIV) in a large-scale low speed axial compressor test facility. The measurements are conducted at four different operating conditions, including the design, middle, maximum static pressure rise and near stall conditions. In order to analyze the variations of the characteristics of the tip leakage vortex (TLV), the trajectory, concentration, size, streamwise velocity, and the blockage parameters are extracted from the ensemble-averaged results and compared at different compressor operating conditions and tip gaps. The results show that the formation of the TLV is delayed with large tip clearance, however, its trajectory moves much faster in an approximately linear way from the blade suction side to pressure side. In the tested compressor, the size of the tip gap has little effects on the scale of the TLV in the spanwise direction, on the contrary, its effects on the pitch-wise direction is very prominent. Breakdown of the TLV were both found at the near-stall condition with different tip gaps. The location of the initiation of the TLV breakdown moves downstream from the 60% chord to 70% chord as the tip gap increases. After the TLV breakdown occurs, the flow blockage near the rotor tip region increases abruptly. The peak value of the blockage effects caused by the TLV breakdown is doubled with the tip gap size increasing from 0.5% to 1.5% blade span.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Nicolas Gourdain ◽  
Francis Leboeuf

This paper deals with the numerical simulation of technologies to increase the compressor performances. The objective is to extend the stable operating range of an axial compressor stage using passive control devices located in the tip region. First, the behavior of the tip leakage flow is investigated in the compressor without control. The simulation shows an increase in the interaction between the tip leakage flow and the main flow when the mass flow is reduced, a phenomenon responsible for the development of a large flow blockage region at the rotor leading edge. A separation of the rotor suction side boundary layer is also observed at near stall conditions. Then, two approaches are tested in order to control these flows in the tip region. The first one is a casing treatment with nonaxisymmetric slots. The method showed a good ability to control the tip leakage flow but failed to reduce the boundary layer separation on the suction side. However, an increase in the operability was observed but with a penalty for the efficiency. The second approach is a blade treatment that consists of a longitudinal groove built in the tip of each rotor blade. The simulation pointed out that the device is able to control partially all the critical flows with no penalty for the efficiency. Finally, some recommendations for the design of passive treatments are presented.


2021 ◽  
pp. 1-27
Author(s):  
Simon Evans ◽  
Junsok Yi ◽  
Sean Nolan ◽  
Liselle Joseph ◽  
Michael Ni ◽  
...  

Abstract In the drive for lower fuel consumption, engine designs for the next generation of single-aisle aircraft will require core sizes below 3 lb/s and OPRs above 50. Traditionally, these core sizes are the domain of centrifugal compressors, but materials limit OPR in these machines. An all-axial HPC at this core size, however, comes with limitations associated with the small blade spans at the back of the HPC, as clearances, fillets and leading edges do not scale with the core size. The result is a substantial efficiency penalty, driven primarily by the tip leakage flow produced by the larger clearance-to-span ratio. To enable small-core, high-OPR, all-axial compressors, mitigating technologies need to be developed and implemented to reduce this penalty. For this technology development to be successful, it is imperative that predictive design tools accurately model the overall flow physics and trends of the technologies developed. In this paper we describe an effort to determine whether different modeling standards are required for large clearance-to-span ratios, and if so, identify criteria for an appropriate solver and/or mesh. Multiple models are run and results compared with data collected in the NASA-GRC Low-Speed Axial Compressor. These comparisons show that steady RANS solvers can predict the pressure-rise characteristic to an acceptable level of accuracy, if careful attention is paid to mesh topology in the tip region. However, unsteady tools are necessary to accurately capture radial profiles of blockage and total pressure.


2021 ◽  
Vol 5 ◽  
pp. 79-89
Author(s):  
Ahmad Fikri Mustaffa ◽  
Vasudevan Kanjirakkad

The stall margin of tip-critical axial compressors can be improved by using circumferential casing grooves. From previous studies, in the literature, the stall margin improvement due to the casing grooves can be attributed to the reduction of the near casing blockage. The pressure rise across the compressor as the compressor is throttled intensifies the tip leakage flow. This results in a stronger tip leakage vortex that is thought to be the main source of the blockage. In this paper, the near casing blockage due to the tip region aerodynamics in a low-speed axial compressor rotor is numerically studied and quantified using a mass flow-based blockage parameter. The peak blockage location at the last stable operating point for a rotor with smooth casing is found to be at about 10% of the tip chord aft of the tip leading edge. Based on this information, an optimised single casing groove design that minimises the peak blockage is found using a surrogate-based optimisation approach. The implementation of the optimised groove is shown to produce a stall margin improvement of about 5%.


Author(s):  
Reid A. Berdanier ◽  
Nicole L. Key

Large rotor tip clearances and the associated tip leakage flows are known to have a significant effect on overall compressor performance. However, detailed experimental data reflecting these effects for a multistage compressor are limited in the open literature. As design trends lead to increased overall compressor pressure ratio for thermal efficiency benefits and increased bypass ratios for propulsive benefits, the rear stages of the high-pressure compressor will become physically small. Because rotor tip clearances cannot scale exactly with blade size due to the margin needed for thermal growth considerations, relatively large tip clearances will be a reality for these rear stages. Experimental data have been collected from a three-stage axial compressor to assess performance with three-tip clearance heights representative of current and future small core machines. Trends of overall pressure rise, stall margin, and efficiency are evaluated using clearance derivatives, and the summarized data presented here begin to narrow the margin of tip clearance sensitivities outlined by previous studies in an effort to inform future compressor designs. Furthermore, interstage measurements show stage matching changes and highlight specific differences in the performance of rotor 1 and stator 2 compared to other blade rows in the machine.


Author(s):  
Juan Du ◽  
Fan Li ◽  
Jichao Li ◽  
Ning Ma ◽  
Feng Lin ◽  
...  

A “slot-groove” hybrid casing treatment (CT) is proposed elicited from the recent research on the role of axial location for stall margin improvement (SMI). This combination is expected to display the advantages of both slots and grooves while minimizing their disadvantages. A comparative study is conducted among the “slot-groove”, traditional circumferential groove CT (called the “full-groove” CT) and axial skewed slot CT (known as the “full-slot” CT) to evaluate performance and to explore the stability enhancement and efficiency loss mechanisms of the “slot-groove” CT in a low-speed axial compressor. Results of the combination of laboratory tests and computational fluid dynamics (CFD) data demonstrate that the performance level of the hybrid CT lies in between those two traditional CTs. Simulation results indicate that the difference in the SMIs generated by CTs is closely related to their influences on the vortex trajectory of tip leakage. The stronger and tighter the vortex is, the more the vortex trajectory is inclined toward the blade suction side. Consequently, the interface between tip leakage flow and incoming main flow is pushed downstream and stability is enhanced. The flow loss induced by CTs is explored based on the entropy contours, and the high entropy in the “slot-groove” treated casing produces more efficiency decrease than the “full-groove” CT. Incorporating the “full-slot” CT not only increases entropy generation in the axial skewed slots but also induces considerable flow loss in the blade passage near the casing, thus reducing efficiency most significantly.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1445
Author(s):  
Moru Song ◽  
Hong Xie ◽  
Bo Yang ◽  
Shuyi Zhang

This paper studies the influence of tip clearance on the flow characteristics related to the performance. Based on full-passage numerical simulation with experimental validation, several clearance models are established and the performance curves are obtained. It is found that there exists an optimum clearance for the stable working range. By analyzing the flow field in tip region, the role of the tip leakage flow is illustrated. In the zero-clearance model, the separation and blockage along the suction side is the main reason for rotating stall. As the tip clearance is increased to the optimum value, the separation is suppressed by the tip leakage flow. However, with the continuing increasing of the tip clearance, the scale and strength of the tip clearance vortex is increased correspondingly. When the tip clearance is larger than the optimum value, the tip clearance vortex gradually dominates the flow field in the tip region, which can increase the unsteadiness in the tip region and trigger forward spillage in stall onset.


Author(s):  
Huang Chen ◽  
Yuanchao Li ◽  
David Tan ◽  
Joseph Katz

Flow visualizations and stereoscopic PIV (SPIV) measurements are carried out to study the flow phenomena developing in the rotor passage of an axial compressor at the onset of stall. Experiments have been performed in the JHU optically index-matched facility, using acrylic blades and liquid that have the same optical refractive index. The blade geometries are based on the first one and a half stages of the Low Speed Axial Compressor (LSAC) facility at NASA Glenn. The SPIV measurements provide detailed snapshots and ensemble statistics on the flow in a series of meridional planes. Data recorded in closely spaced planes enable us to obtain ensemble averaged 3D vorticity distributions. High speed imaging of cavitation, performed at low pressure, is used to qualitatively visualize the vortical structures within the rotor passage. The observations are performed just above and at stall conditions. At pre-stall condition, shortly after it rolled up, the tip leakage vortex (TLV) breaks up into widely distributed intermittent vortical structures. In particular, interaction of the backward tip leakage flow with the nearly opposite direction main passage flow under (radially inward) it results in periodic generation of large scale vortices that extend upstream, from the suction side (SS) of one blade to the pressure side (PS) or even near the leading edge of the next blade. When these structures penetrate to the next passage, they trigger formation of a similar phenomenon there, initiating a process that sustains itself. Once they form, these vortices rotate with the blade, indicating little through flow in the tip region. The 3D velocity and vorticity distributions confirm the presence of these large flow structures at the transition between the high circumferential velocity region below the TLV center and the main flow deeper in the passage. Further reduction in flow rate into the stall range caused a rapid increase in the number and scale of these vortices, demonstrating that their formation and proliferation plays a key role in the onset of stall.


Author(s):  
Yanfei Gao ◽  
Yangwei Liu ◽  
Luyang Zhong ◽  
Jiexuan Hou ◽  
Lipeng Lu

AbstractThe standard k-ε model (SKE) and the Reynolds stress model (RSM) are employed to predict the tip leakage flow (TLF) in a low-speed large-scale axial compressor rotor. Then, a new research method is adopted to “freeze” the turbulent kinetic energy and dissipation rate of the flow field derived from the RSM, and obtain the turbulent viscosity using the Boussinesq hypothesis. The Reynolds stresses and mean flow field computed on the basis of the frozen viscosity are compared with the results of the SKE and the RSM. The flow field in the tip region based on the frozen viscosity is more similar to the results of the RSM than those of the SKE, although certain differences can be observed. This finding indicates that the non-equilibrium turbulence transport nature plays an important role in predicting the TLF, as well as the turbulence anisotropy.


Sign in / Sign up

Export Citation Format

Share Document